
Cluster Middleware

Divyang Mittal Siddhant Agarwal Shrey Shrivastava

Ritik Kumar Kanishk Singh

Abstract
The need for more and more computation has grown
exponentially over the years. It was only 10 years ago
when deep learning era started and now we have models
that contain more than 150 billion parameters. Every
year we see better supercomputers being developed in
terms of the computation power. We all are aware that
the Moore’s Law was saturated that means the develop-
ment in cpus has slowed down. So, how exactly are the
increasing demands for computation met? The answer
is to combine several cpus to distribute the workload
among them. Clusters are networks of several comput-
ers that can be viewed as a large very powerful computer.
Each computer (called a node) is itself (ideally) a high
performance computer with a powerful cpu. Resources
are allocated from these computers for the jobs submit-
ted by the user. Clusters have become an integral part
of any high computing facilities. Several modern super-
computers are infact huge clusters of compute nodes. A
cluster management service or a cluster middleware is a
system that manages this network of computers. It per-
forms several necessary functions such as job scheduling,
fault tolerance, load balancing etc. We discuss several
possible implementation paradigms of these services.
We also provide a simple prototype for the cluster man-
agement system that will perform most of the necessary
functions.

1 Introduction

With the ever increasing scale of deploying applica-
tions, the need of managing hundreds of thousands

of machines to run them efficiently with high avail-
ability has led us to develop complex system soft-
ware. Other computing applications which require
machines to have processor and memory capabili-
ties impossible for a single machine, require a group
of machines to act as a single machine. A cluster
is a group of machines, usually heterogeneous in
terms of processor, RAM, disk, and I/O capabilities
linked through a high speed LAN, acting as a sin-
gle logical unit i.e a single more powerful machine.
Almost all research groups that require high perfor-
mance computation need clusters. Although small
research groups have clusters with as few as 8-16
compute nodes.

The power of computer clusters can be judged
from the example of supercomputers. Few decades
ago, supercomputers such as Cray-1, Cyber 205
were computers with capabilities such as vector
processing. With time all these enhancements have
been incorporated into personal computers. Modern
supercomputers are hence made up of large num-
ber of such processors. According to top500[5], the
list of fastest supercomputers of November 2020
is dominated by computer clusters such as Fugaku,
Summit, etc. Fugaku[8] is the fastest supercom-
puter according to that list and consists of 158,976
computation nodes. The second entry in the list
is Summit[10] by IBM systems which runs over
4,608 nodes. In fact, Most of the supercomputers
are cluster systems. These consists of several thou-
sands of high performance compute nodes. Cluster
computing, at this scale, is being used by many

1



Figure 1: A sample architecture for a cluster system. The user interacts with the master node which
communicates with the compute nodes. The user, in general, cannot access the compute nodes directly.
Courtsey: [1]

product based companies and scientific research
organisations. The jobs performed by cluster com-
puters usually involve executing 10000 copies of
product applications or a single application with
100 GB RAM requirement.

Cluster computing provides a single system im-
age (SSI) of the cluster so that users can access the
resources without worrying for the underlying com-
plexity of combining the cluster resources, achieved
using cluster middleware. Cluster middleware cre-
ates an abstraction for the user, by gluing the oper-
ating systems of the cluster nodes and providing a
unified access to resources.

Cluster middleware acts as an interface between
user applications and cluster node resources. It is
composed of resource management, job queuing,
job scheduling, job management, and fault toler-
ance.

2 Design Issues and Architectures

A cluster management system consists of a central
node that performs various management protocols

such as job scheduling, matchmaking and load bal-
ancing. There are several design principles for each
of the protocols, that can be followed while design-
ing a cluster middleware.

An example can be deciding whether compute
nodes can be accessed by the user or not. Several
clusters do not allow the user to directly connect
to the compute nodes. Here, the user can simply
connect to the master node and the master node
then schedules jobs on the compute nodes. But,
systems like Condor [14] allow jobs to be directly
initiated at the compute nodes. In Condor, the user
system becomes a part of the cluster, starts the job
and sends the status to the master node. If jobs are
submitted to the master node, they are scheduled on
the idle user systems which act as compute nodes.

Network topology is another such design choice.
In most cases, the compute nodes are directly con-
nected to central server. They may or may not be
in a fully connected topology among themselves.
Beawulf clusters are perhaps the most simplest clus-
ters. These have a dense topologies with a master-
slave architecture.

We now discuss the various design policies for

2



cluster middleware.

2.1 Job Scheduling
Job scheduling is about finding the most eligible job
to run from various jobs available for execution. It
is often broken into various steps. Now, We explain
some of these important processes involved in job
scheduling.

2.1.1 Matchmaking

The first step decides the node at which a job should
be accepted for execution. There might be a central
master node to handle this or can be handled in a
distributed way at each node. The jobs might have
some priorities and different resource requirements.
Therefore, scheduling the job and finding the best
node for the job based on priorities and require-
ments is important. Matchmaking is essential for
all these requirements.

The most commonly implemented architectures
requires the jobs to be submitted to the central
server which schedules these on the compute nodes.
Even for non dedicated cluster or workstations,
there exists a central service which has maintains
the status of all available nodes in the system.

Every job mentions some system requirements
like memory, number of processing units etc. Jobs
can also be allowed to run on more than one com-
pute nodes. Also, different jobs can have different
priorities. First of all the central manager decides on
the eligible machines for each job depending on the
basic requirements. It also decides on how much
resources can be allocated to each job depending
on their priorities.

2.1.2 Load Balancing

One of the most important tasks for the cen-
tral server is load balancing. Some architectures
follow non preemptive setup where once a job
is dispatched, it cannot be disturbed. But some
paradigms allow the central server to preempt jobs.
This is sometimes a desired quality and allows the

system administrator to forcefully stop the misbe-
haved jobs. The server can also be allowed to mi-
grate jobs from one node to the other to ensure load
balancing. The server can also be allowed to follow
dynamic load balancing where it will constantly
monitor the states of the nodes and migrate jobs if
necessary, but this will lead to a lot of overhead on
the server end.

2.1.3 Fairness Policies

The servers maintain priority queues for the various
jobs while scheduling jobs. This happens both at
central server and at computation nodes. But the
server should ensure that a job does not constantly
starve by dynamically changing the priority of wait-
ing jobs. To prevent this age of job is considered
while scheduling them. But if a job with high pri-
ority arrives, some systems may preempt a running
job to dispatch the high priority one.

Although, we have been constantly saying that
the central node dispatches jobs to the compute
nodes, this assumes that the central node simply
manages the cluster. But some systems allow the
central server to act as a compute node as well.
There are systems where the user can submit jobs
to any machine in the cluster and this machine in-
forms the central node about the job it is running.
The central node maintains the state of the other
nodes and follows simple load balancing primitives.
Clearly this system should follow a completely con-
nected topology.

2.1.4 Parameters and Metrics

Different parameters are used to decide the order in
which these jobs should be executed. Some of them
are a pre-specified job priority(niceness), deadline
associated with the job, estimated execution time of
the job, availability of computing resources, depen-
dencies of jobs, nature and size of job, capability
of compute nodes in case of heterogeneous system
and job submission time.

The various metrics used to judge the perfor-
mance of a job scheduler in this context are fairness

3



in allocation of resources, maximum utilization of
resources, maximum throughput and minimum re-
sponse time. A poor cluster management system
design might starve low priority jobs to prefer jobs
with high priority. Thus, it is equally important to
consider some sort of fairness to ensure the low
priority jobs do not get repeatedly preempted or in
other words, ensure no starvation. One major goal
of job scheduling is to achieve load balancing over
various nodes. A good job scheduler ensures proper
load balancing by distributing equivalent number
of jobs to these nodes.

2.2 Fault tolerance
Faults are extremely common in any distributed
system. These faults can arise due to both hardware
or software failures. As the system complexity in-
creases, the number of possible fault points also
increases. A good distributed system will try to
handle the faults such that the user never finds any
occurrence of faults. But this is not always guaran-
teed. Moreover, every fault tolerant system have a
maximum number of faults that it can handle. It is
not possible to create a system that can handle any
number of faults.

To handle faults, redundancies need to be added
to the system which increases the cost of the system.
So there is a trade off on the number of faults the
system can handle. Fault tolerance can be achieved
in several ways and is dependent on what type of
faults are being handled. For example if the disk
crashed, then the data stored in the disk is lost. To
handle this, the system must maintain at least one
copy of the data in some other disk. Also the repli-
cation should be kept updated otherwise a lot of
transactions performed on the data can be lost. But
then how often should the data be updated? Also,
several disks are collectively stored in stacks that
are interconnected. What if an entire stack fails
with the replicated data being on the same stack as
the original data? There are several protocols that
handle the replication of data.

If say any compute node crashes, then the job
that was running in the compute node will be lost.

So, the job must be restarted at some other compute
node. But then should the job be started from the
beginning? If so, the data has already been updated
while the job was running, how to get back the disk
state at the beginning of the job? Also restarting the
job from the beginning can lead to a lot of wastage
of computation and time.

Clearly, fault tolerance requires several design
principles to be followed and solving all kinds of
faults is very expensive for the system. So the de-
signer needs to decide on type and number of faults
the system will handle.

A simple way to handle the crash of a compute
node can be periodically save the checkpoints of the
nodes and jobs, and restore them once the fault is
removed. This can be followed if the time taken to
recover is small. But if the time to recover is large,
then the jobs in the node will be stalled for a lot of
time. In typical systems such as Condor, a central
manager is present which periodically sends heart-
beats to all nodes. This checks for any potential
crash failures at any nodes who reply to show their
presence. In case no reply is received within a fixed
time interval, the node is assumed to have crashed
and is removed from the system. All the jobs sched-
uled at that node need to be re-deployed at a new
node. Here, if the jobs at that node are restarted,
then it must be ensured that the files and data can
be restored to the initial state. If the jobs can be
restored from checkpoints, appropriate checkpoints
for the relevant files must also be maintained.

If the central node or the master node fails, the sit-
uation is different. There can be more than one mas-
ter node, where one can be active while the other
can kept as backup. There can be more than one ac-
tive master nodes as well, but then there must exist
a mechanism for the master nodes to inform each
other if a job is submitted. If the compute nodes can
run the daemons of the master node, (like Condor),
a new master can be elected from existing nodes via
leader election protocol. The central server can pe-
riodically save it’s global snapshot on some backup
server so that this new central manager can restore
it’s state.

4



2.2.1 Dependability

The system designer must ensure that the cluster is
dependable. This means that the user can depend
on the system and can assume that in most cases,
he will be able to successfully execute the jobs on
the cluster. But dependability is an abstract term.
There must a metric to compare two systems. Also,
the designer must keep in mind the time taken for
the fault to be repaired. If the time to recover from
a fault is small, then the system can assume small
number of simultaneous faults. But if the recov-
ery takes days, then the designer must design the
system accordingly.

Mean Time To Failure (MTTF) measures the av-
erage time a device can run before failing. Mean
Time To Repair (MTTR) is the average time taken
to repair the device that had failed. Uptime is the
percentage of time the device was working and was
available. These metrics can help to compare dif-
ferent designs for their fault tolerance capabilities.
If a system consists of several devices with low
MTTF, and high MTTR, it means that there will
be lot of components that might not be available
simultaneously.

2.3 File system management

File system is another major component of a dis-
tributed system architecture. The data needs to be
share with the computation nodes and movement of
data is required between the nodes as well. Due to
this, There is a large amount of data in the cluster
moving from one node to another. This requires
an efficient file system which can help us store the
data in an organized manner. There are two options
available to us with respect to file systems, local
or centralised file system. Systems with only local
file systems have a quicker computation when they
have data stored with them but a centralised file sys-
tem ensures swifter communication between nodes.
In case of crash, data stored in local file systems
is lost but with centralised file system this data is
secure.

Several cluster management systems use a sep-

arate file server. Here, the compute nodes com-
municate with "centralised" server to access the
required files for execution. The centralised data
server can itself be a distributed system, implement-
ing a Network Attached storage protocol. So, the
compute nodes still have a centralised view for the
files but these files are distributed over a network.
Moreover, the file system can be made a part of
the cluster with the centralised service only pro-
viding the block level information. Naturally, all
compute nodes should be directly connected to the
file server.

Cluster services also allow the compute nodes to
store files and itself form a distributed file system
like NFS. But this has some limitations. First of all,
this will call for the compute nodes to be completely
connected with each other. Also, compute nodes
should ideally be performing computation inten-
sive tasks. Running a file system over them could
unnecessarily waste compute resources. There can
be caches at each nodes in accordance with the
principle of locality to improve performance. The
performance of a such a file system can be judged
by testing some data intensive programs on this
cluster.

2.4 Administrative policies
Generally, there are administrators who monitor
clusters and make sure that the users face no issues
with the cluster middleware. Naturally the cluster
middleware should provide additional privileges to
the administrator. Cluster managers like SLURM
allow the administrator to design the configuration
of the cluster which includes the management poli-
cies, scheduling policies etc.

So, the administrator must be allowed to monitor
the state of the nodes, and view the status of all
jobs and job queues. Moreover, the administrator
should also be able to kill any job. Each user (user
group b extension) needs to have an upper limit
on the resources used, and running time. It should
not happen that one user, or a group of users, are
continuously using all the resources, while other
jobs are constantly waiting. But, some users may

5



be allowed a higher priority in running jobs. These
decisions are made by the administrator. The admin
defines the quota and priority for each user or user
group.

The cluster middleware designer must make sure
to include some admin privileges. It is up to the de-
signer to allow the admin to be able to preempt jobs
or allow to define the priorities of jobs etc. Some
cluster manager give a lot of authority to the ad-
ministrator, while in some, the administrator is just
a person who monitors the nodes and accounting
records.

3 Case Study - SLURM

3.1 Introduction

Slurm [19] is an open source, fault tolerant and
scalable cluster middleware for linux clusters. It
was initially developed as a free software resource
manager in 2002. It was then known as Simple
Linux Utility for Resource Management. Later in
2008, several sophisticated plugins were added in
2008 and it slowly became one of the most pop-
ular cluster middleware used by both small and
large clusters. Even several supercomputers use the
Slurm Workload Manager to manage its resources
and schedule jobs. One example can be the CTE-
POWER supercomputer in Barcelona. Even the su-
percomputer in our institute, PARAM Shakti uses
Slurm.

Slurm primarily performs three functions as a
cluster manager,

• It allocates exclusive and/or non exclusive ac-
cess to computation resources for some dura-
tion.

• Provides a framework to execute and monitor
jobs on a set of allocated nodes.

• Maintains queue of pending jobs to and allo-
cates resources to the jobs in the order they are
present in the queue.

We will discuss some design goals that were dis-
cussed by the Slurm developers. Then we will dive
deep into the architecture, where we will explain
the different daemon processes that perform the
various operations. Later we will discuss the inter-
face that is provided by slurm to the user to submit
and manage jobs. Finally we will explain the ad-
vantages and disadvantages of the various design
choices made by slurm.

3.2 Design Goals
SLURM has been developed with a view to provide
a resource management system with a design that
is simple, efficient, fault tolerant, highly scalable
and portable. This project had the following design
goals as listed below -

• SLURM has maintained a simple architecture
which provides an easy first system to users to
understand cluster management system. Also
it is an open source project making it freely
accessible for everyone.

• SLURM is highly scalable which allows it to
add thousands of nodes while maintaining it’s
simple design.

• SLURM has a plug-in mechanism making it
easily portable for various systems. Initially it
was created for Linux but support for various
other UNIX OS can be easily added.

• SLURM uses a similar plug-in design for the
interconnects and supports UDP/IP based com-
munication.

• SLURM ensures security by authenticating
users and communication between services
using crypto techniques.

• SLURM is fault tolerant and aims to provide
efficient use of resources. This is done by mak-
ing a node quickly available for subsequent
jobs after completion of a job. The job sub-
mitted to a crashed node is allocated to a free
node without affecting other nodes.

6



• SLURM maintains general configuration files
which makes it easy to maintain for the admin-
istrators. Changes made in the these files can
reflect in the system without interfering with
the running jobs. It also uses general purpose
scripts to maintain it’s interface.

3.3 Architecture

Slurm has a central manager that schedules and
manages jobs. As shown in figure 2, there is a
central daemon slurmctld running in the central
manager, while each compute nodes run slurmd.
There is a general purpose plugin mechanism that
provides different behaviour such scheduling poli-
cies, process tracking etc). Slurm may be aware
of the network topology and use it for node selec-
tion. No user can directly interact with any of the
compute nodes. It provides a rich set of command
line options to control the selection of nodes and
distribution of task to the allocated nodes.

First let us discuss about the various daemons
that run on the nodes.

3.3.1 Daemons

Daemons are background processes that run con-
tinuously and are primarily for handling service
requests. There are four daemons that are particu-
larly important to manage the requests in slurm.

• slurmctld (Central Daemon): It is the cen-
tral manager daemon that runs on the central
node. When it starts, it first reads the config
files and then the additional state information
stored in separate checkpoint files from pre-
vious execution of slurmctld. It monitors the
state of each node in the cluster. It periodically
queries the slurmd (local daemons) running
on the compute nodes to receive state infor-
mation. It accepts user job requests and places
them in appropriate queues. It also allocates
resources to the jobs and keeps track of the hot
spare pool.

• slurmdbd: This is the slurm database daemon.
This is used to record the accounting informa-
tion in a database. It uploads the configuration
details like limits, fair-share etc to slurmctld.

• slurmd (Local daemon): This is a small,
light-weight, multi-threaded daemon that runs
on the each of the compute nodes. It acts like
a remote shell, i.e. it waits for work, executes
it, returns the status and then again waits for
another work. It initiates the jobs and so runs
with root privilege. It only has the informa-
tion of the currently executing jobs. Initating
the process includes setting process limits, es-
tablishing environment variables etc. It also
allows the handling of stdout, stdin and stderr
for the jobs. It also provides fault tolerant hi-
erarchical communications with configurable
fanout.

3.3.2 Plugins and Configuration

Slurm is very flexible and easily configurable to
show different behaviours. The administrator de-
cides on the various policies for scheduling, man-
agement etc and puts them in the respective con-
fig files. Slurm provides a general purpose plugin
mechanism to support the various infrastructures.
This permits a wide variety of configurations. Plug-
ins are basically dynamically linked object files that
are loaded at run-time based on the configuration
files. In the configuration file, the admin lists down
all the plugins for the various policies that are to be
followed.

Management Plugins: These define the policies
for location of controllers, logs, backups, state info
etc, authentication policies, policies for checkpoint-
ing, accounting, security and encryption, process
tracking etc.

Scheduling plugins: These basically contain the
policies for the type of scheduler, preemtion and
priority. Scheduler type can be the default FIFO
scheduler or backfill scheduling policies. In Back-
fill scheduling, the jobs are scheduled as long as
they do not delay any process waiting higher in the

7



Figure 2: An overview of the slurm architecture. Client(user) is given an interface in the form of command
line instructions. slurmctld daemon which runs on the central manager accepts the user requests. slurmd
daemons run on the compute nodes and act as remote shells to slurmctld. slurmdbd maintains the database.
The figure also depicts a backup central server to be used during faults. Courtesy: [13]

queue. There can be several preemption modes like
simply cancelling a job that is preempted or saving
the checkpoint. The preempted jobs can also be re
queued.

Allocation plugins: There are polices defining
how the resources are allocated to the tasks. One
approach can be to allocate entire nodes to the tasks,
i.e. resources are shared. The other way can be to al-
locate individual resources to jobs without sharing
any resource. There can also be policies for affinity
and binding of tasks to cpus.

Partition plugins: Slurm divides nodes into sets
called partitions. These partitions are defined in the
config file. Each partition has some specific prop-
erties like preemption and priority. That means a
partition can have lower priority than other parti-
tions. Partitions will be discussed in detail in section
3.3.3.

Topology plugins: If slurm is aware of the topol-
ogy of the compute nodes, it can provide a best-fit

selection for resources. Moreover, each nodes main-
tain a separate config file that contains the descrip-
tion of the topology architecture.

Accounting plugins: There a list of plugins for
configuring the resource accounting. There are plu-
gins to control how the data will be recorded, to
gather information from the database, to control
how job completion information will be recorded
etc.

There are many more plugins apart from what
have been mentioned. Infact, there are 100+ plugins
in 26 different varieties.

3.3.3 Node architecture

The various nodes in the system are grouped into
disjoint sets known as partitions. A job thus re-
quires an allocation of a partition for some amount
of time. Each of these partitions have their own
specifications such as size of job, time limit, etc. A

8



Figure 3: Depiction of partitions in slurm. Here,
various computation nodes are divided into two
partitions. Courtesy: [15]

partition may have multiple jobs as long as it has
sufficient resources to run them. A job can only
be assigned to a particular partition. After this al-
location, these jobs can run independently for the
specified time. SLURM also manages the resources
between the multiple jobs in a partition to prevent
any competition and subsequent starvation.

There are several advantages of using multi-
ple partitions. Different partitions provide differ-
ent users with different capabilities. Often parti-
tions have different priorities so multiple queues
are maintained each with different priorities. Parti-
tions group similar machines in the cluster to form
a subset. For example, a person with a gpu intensive
job should ideally be waiting only for other gpu-
intensive jobs. Also assigning such jobs to a ma-
chine designed more for cpu intensive jobs means
resources are not being utilised properly.

An interesting use case of this partition system
has been used in PARAM Shakti [11]. It has di-
vided the nodes into various partitions depending
on their computation power. The various divide
include standard, gpu, hm, standard-low and gpu-
low. These also differ in the availability of gpu’s
as evident from their namesake. This is beneficial
as different amount can be charged for providing
these varying level of computation power.

3.3.4 Fault Tolerance

SLURM employs various methods to ensure that
this system is fault tolerant. The central daemon,
slurmctld runs over two nodes, one in master other
in standby mode, to ensure the system can recover
in case the master node crashes. This master node
periodically writes checkpoints to the disk. The re-
covery process involves the backup central to read
the configuration file. Then it restores the check-
point file for recovery of previous state.

SLURM provides a configuration nonstop.conf
[15] if we want to run it in fault tolerant mode.
It groups the nodes in two additional sets namely
failing nodes and failed nodes. Failing nodes are
those which are malfunctioning or are expected
to fail. There are also a cluster wide set of nodes
known as hot spare pool. These are responsible for
handling the jobs with the failing or failed nodes.
Any failed node on recovering gets added to the
spare pool by default. For the application, SLURM
provides them with a replacement node or increases
their run time.

3.4 User Features
3.4.1 Command Line Interface

SLURM provides a simple command line interface
to the end user to run their jobs. These all have been
bundled into the SLURM APIs as follows-

• scancel: Used to cancel a job or send a random
signal to all processes performing a particular
job. The user must have proper authorization
to use it.

• scontrol: An administrative command used to
remove a node or partition from the cluster.

• sinfo: Provides information about the various
nodes and partition.

• squeue: Shows the queues of running and
waiting jobs.

• srun: Used to allocate resources and run jobs.

9



3.4.2 Communications Layer

SLURM provides flexibility in choosing the com-
munication layer due to it’s plug-in mechanism. At
the moment it uses Berkeley sockets. It is capable
of serving around 1000 nodes using ethernet and
sockets.

3.4.3 Security

SLURM provides certain privileged instructions
such as scancel and scontrol that can be used by
authorized people only. Also the SLURM configu-
ration files can only be modified by system admin-
istrators. SLURM supports the following authenti-
cation mechanism - munged,authd and none. Im-
plementation for other authentication mechanisms
can be developed using it’s plug-ins.

The various steps of a SLURM job are authen-
ticated using an encrypted job step credential. It
contains many details including the user ID, job ID,
ist of resources and lifetime of this credential. This
is provided to the user upon calling srun. This cre-
dential is checked by the slurmd daemon to allow
access to resources.

3.4.4 Job Modes

SLURM provides three different modes to user
to run a job. These are interactive mode, allocate
mode and batch mode. In interactive mode, the std-
out,stderr and stdin requests are redirected to the
user terminal. A user can provide any inputs or com-
municate to the job using this terminal. In the batch
mode, The jobs are continuously accumulated in a
queue as long as resources are available by slurm-
ctld. SLURM submits this job to the slurmd as soon
as the resources are available depending on it’s pri-
ority. This submitted job maybe an srun or multiple
instances of srun in a job script .In allocate mode, a
user is allocated a job. The user can then run the job
manually or by using a script. Upon job allocation,
a terminal is spawned for the user and the job is
complete when the terminal is closed.

4 Case Study - Linux HA

4.1 Introduction

A high-availability cluster is a group of computers
to improve the availability of services and resources
that cluster provide, so that a failure of any single
node in the cluster will not cause the service to
become unavailable. This is done by a cluster soft-
ware. The software monitors the availability of the
cluster nodes and the availability of the services
that are managed by the cluster. Anytime, if the
HA cluster notices any server going down, it makes
sure that services is restarted in any other servers
in the cluster, so that can be used again with little
interruption.

To provide high availability in Linux [4] , it
started with a simple code implementation called
Heartbeat [12] . An early implementation of Heart-
beat could monitor only two nodes and could start
more than one services on those two nodes. So, if a
node with some resources/services went down, the
resources gets restarted on the other node. Some
of these shortcomings were resolved in the second
version of Heartbeat. Heartbeat 2 is based on the
use of Cluster Resource manager which allowed to
configure two or more nodes in active/ passive or
active/ active configurations. Later the Heartbeat 2
Cluster Resource manager was removed and a new
project called Pacemaker was started. Our current
case study is based on the project Pacemaker which
is used in most of the High Availability clusters
today.

4.2 Pacemaker-(Linux-HA)

Pacemaker [7] is a high-availability cluster resource
manager that can coordinate the startup and recov-
ery of interconnected services across a group of
machines in order to maintain the integrity of de-
sired services and reduce resource downtime.

A Pacemaker stack is built upon following core
components. An overview of the Linux High-
Availability(HA) Cluster-Stack is shown in Fig 5:

10



Figure 4: Pacemaker-Architecture: [7]

• Resource Agents: The abstraction that al-
lows Pacemaker to manage services is called
Resource Agents. They contain the logic for
the cluster to execute when it decided to run,
stop, or check the service’s health.

• Fencing Agents: Fence agents are the artifi-
cial construct that allows Pacemaker to isolate
bad nodes by turning them off or restricting
their access to common resources.

• Cluster membership layer: This component
provides reliable messaging, membership, and
quorum information about the cluster. Cur-
rently, Pacemaker supports Corosync as this
layer. Corosync APIs provide membership (a
list of peers), messaging (the ability to commu-
nicate with processes upon these peers), and
quorum (do we have a majority) functionality.

• Cluster Resource Manager: The pacemaker
connects to the brain, which processes and re-
acts to events in the cluster. Nodes entering or
abandoning the cluster; resource events caused
by failures, maintenance, or scheduled activ-
ities; and other administrative decisions are
examples of these events. Pacemaker can start
and stop resources and fence nodes to reach
the desired availability.

Figure 5: Cluster-Stack: [7]

• Cluster tools: These provide an interface
for users to interact with the cluster. Various
command-line and graphical (GUI) interfaces
are available. In addition to the command line
tool and the Pacemaker GUI, the High Avail-
ability Extension also comes with the HA Web
Konsole (Hawk) [3], a Web-based user inter-
face for management tasks.

4.2.1 Architecture

Pacemaker is composed of multiple daemons that
work together. An overview of the Pacemaker ar-
chitecture is shown in Fig 4 :

• pacemakerd: It is the master process that
releases all other daemons and even restarts
the daemons if they exit unexpectedly.

• pacemaker-based: This is the manager that
keeps the CIB synchronised across the clus-
ter and manages requests to modify it. The
Cluster Information Base (CIB) is an XML
representation of the cluster’s configuration as
well as the state of all nodes and resources in
the cluster.

• pacemaker-attrd: It is the attribute manager
which is in charge of maintaining a database
of all node attributes, keeping it synchronised
across the cluster, and handling requests to

11



modify them. In most cases, the attributes are
recorded in the CIB.

• pacemaker-schedulerd: The scheduler de-
cides what actions are required to achieve the
cluster’s desired state given a snapshot of the
CIB as feedback.

• pacemaker-execd: It is the local executor
that processes and returns requests to run re-
source agents on the local cluster node.

• pacemaker-fenced: The fencer handles re-
quests to fence nodes. Fencer chooses which
cluster nodes to execute which fencing devices
given a target node, then calls the appropriate
fencing agents and returns the result.

• pacemaker-controld: The controller is Pace-
maker’s coordinator, keeping track of cluster
membership and orchestrating all other com-
ponents.

4.3 Cluster Resource Manager

4.3.1 Cluster Resource

A resource is a service made highly available by
a cluster. Cluster resources can include web sites,
databases, file systems, virtual machines, and any
other server-based applications or services one want
to make available to users at all times. A resource
can be of primitive type, or can be of complex forms
such as groups and clones. Each of the primitive
resource comes with a resource agent that abstract
the service it provides and present a consistent view
to the cluster. So the cluster itself does not need
to understand and manage resources but depends
on the resource agent to do the right thing on start,
stop operations on the resource.

Cluster performs various operations/actions on a
resource by calling the resource agent. Some of the
most common operations which a resource agent
must support are start, stop and monitor.

4.3.2 Monitoring Resources

If user wants to make sure a resource is up and run-
ning, one should set up resource tracking for it. If
resource monitoring configuration is not done, then
the cluster will always show the resource as healthy
even if the resource is failed after a successful start.

The CRM performs a probe, or initial monitor-
ing, for each resource on each node to ensure that
it is running where it should be and not where it
shouldn’t be. A probe is also executed after the
cleanup of a resource. To ensure that resources re-
main healthy, user can add multiple monitoring op-
erations to a resource’s definition. The CRM will
choose the one with the shortest interval and use
its timeout value as the probe’s default timeout. If
no monitor operation is configure, the cluster-wide
default operation applies.

4.3.3 Resource-Score

The cluster’s operation is dependent on scores of
all types. Everything from migrating a resource to
choosing which resources in a deteriorated cluster
to stop is accomplished in some way by manipu-
lating scores. Scores are assigned to each resource,
and any node with a negative score for that resource
will be unable to use it.

4.3.4 Resource Constraints

Configuring all of the resources is only half of
the work. If the cluster is aware of all required
resources, this might not be able to control them
properly. Users can define which cluster nodes re-
sources can operate on, what order resources will
load, and what other resources a resource is reliant
on using resource constraints. Three different types
of constraints are available:

• Resource Location: The cluster uses loca-
tion constraints to determine which nodes a
resource can run on.

• Resource Colocation: Colocational con-
straints simply tell the cluster which resources

12



are allowed or not allowed to run on the same
node.

• Resource Order: Ordering constraints spec-
ify the order in which certain resource actions
should take place in the cluster.

4.3.5 Resource Allocation-Policy

As per the resource allocation scores on each node,
Pacemaker gets to decide where to assign a re-
source. The resource will be assigned to the node
with the highest score for the resource.

In the event of a tie, Pacemaker will balance the
load by selecting the node with the fewest allo-
cated resources. We can’t optimally balance the
load based on the number of resources allocated to
each node. Furthermore, if resources are allocated
in such a way that their combined requirements ex-
ceed the available capacity, they may fail to start or
perform poorly.

To take these factors into account, Pacemaker
allows the user to configure:

• Utilization Attributes: Utilization attributes
in node and resource objects may be used to
configure the capability that a node provides
or that a resource requires. Users can name
utilisation attributes according to their inclina-
tions and define as many name/value pairs as
needed.

• Placement Strategy: After configuring the
capacities provided by nodes and the capaci-
ties required by resources, the user must set
the placement-strategy in the global cluster
options.

4.3.6 Resource Priority and Preemption

Perhaps not all resources can be activated at the
same time. In that case the cluster can disable lower-
priority resources in order to keep higher-priority
resources operational. The tie is broken through the
following procedure:

• To avoid resource shuffling, the resource with
the top score on the node where it’s running is
allocated first.

• If the scores above are identical or the re-
sources are unused, the resource with the high-
est score on the chosen node is assigned first.

• If all of the above scores are identical, the first
usable resource mentioned in the CIB is allo-
cated first.

4.3.7 Handling Resource Failure

CRM automatically attempts to recover failed re-
sources by restarting them. If it fails to be achieved
or it fails N times on the current node, it will try to
run over on another node. User can define the num-
ber of failures threshold for resources, after which
they will migrate to a new node.

4.4 Corosync

Corosync [2] is the communication layer of modern
open-source clusters. It is the cluster membership
layer that monitors the availability of nodes. It man-
ages and monitors node membership.

4.4.1 Features

Main features provide by Corosync Project are :-

• A closed process group communication model
with virtual synchrony that guarantees to cre-
ate replicated state machines.

• A quorum system to notify applications when
quorum is reached or lost.

• A simple availability manager to restart the
application process upon its failure.

• A configuration and statistical in-memory
database that allows you to set, recover, and
receive information change alerts.

13



4.4.2 Quorum

If more than half of all possible votes are success-
fully cast, the cluster is operational. The quorum is
the number of votes required to obtain more than
half of the votes. If half or more of the nodes in
a cluster can’t connect with each other, the cluster
loses quorum.

4.4.3 Working Principle

Corosync uses the totem protocol for "heartbeat"
like monitoring of the other node’s health. Each
node receives a token, performs some work such
as acknowledging old messages or sending new
ones, and then passes the token on to the next node.
This constantly goes around and around. If a node
fails to pass on its token after a short timeout pe-
riod, the token is declared lost, an error count is
increased, and a new token is sent. The node is
declared lost/dead if it loses too many tokens in a
row.The surviving nodes form a new cluster after
the node is declared lost. The new cluster will con-
tinue to provide services if there are enough nodes
left to form quorum.

4.5 Fencing

Fencing guards against data corruption caused by
faulty nodes or unintended concurrent access to
shared resources. Fencing prevents a "split brain"
failure, in which cluster nodes lose their ability to
efficiently interact with one another but continue
to run resources. Multiple instances of a resource
could be started on different nodes if the cluster
simply believed that uncommunicative nodes were
down. The impact of split brain varies according
to the resource form. An IP address set up on two
hosts on a network, for example, can cause packets
to be sent to one or the other host at random, making
the IP address useless. If the user is dealing with a
database or a clustered file system, the effect could
be much more severe, causing data corruption or
divergence.

4.5.1 Fencing Device

A fence device (also known as a fencing device) is
a resource that allows users to fence a node. Intelli-
gent power switches and IPMI systems that accept
SNMP command to cut power to a node are exam-
ples of fencing devices, as are iSCSI controllers
that enable SCSI reservations to be used to cut a
node’s connection to a shared disc. When fencing
devices will be used to recover from the loss of
networking access to other nodes, it is important
that they do not use the same network as the cluster,
as this will result in a single point of failure. Al-
though the loss of a node due to a power outage is
indistinguishable from the loss of network access
to that node, at least one fence unit for that node
must not share power. An on-board IPMI controller
that shares power with its host, for example, should
not be used as the host’s sole fencing unit.

4.5.2 Fencing Agent

A stonith-class assets agent is a fence agent (or
fencing agent). The fence agent model defines com-
mands that the cluster can use to fence nodes (such
as off and reboot). This, like other resource agent
classes, adds a layer of abstraction so Pacemaker
doesn’t have to worry about complex fencing tech-
nology because that information is contained within
the agent.

4.5.3 Working Principle

Usually, fencing devices only have an interface
from which commands can be sent to an exter-
nal computer. Fencing can also be started at any
stage in the cluster life cycle, even before any re-
sources have been started, by Pacemaker, other
cluster-aware applications like Distributed Lock
Manager(DLM) or manually by an administrator.
Pacemaker does not need the fence system resource
to be "started" in order to be used, in order to ac-
commodate this. Whether or not a fence device is
started decides whether or not a node operates any
repeated monitors for the device, as well as giving

14



the node a small advantage of being selected to per-
form fencing for that device. Any node can run any
fencing system by default. When a fence device’s
target-role is set to Stopped, it can no longer be used
by any node. If a node’s mandatory location con-
straints prohibit it from "running" a fence device,
it will never be chosen to perform fencing with the
device. A node can fence itself, but the cluster can
only do so if no other nodes are capable.

5 Case Study - Borg

5.1 Introduction

Borg [16], Google’s own cluster management sys-
tem, runs thousands of jobs per second and supports
a wide variety of applications across hundreds of
clusters. A declarative task description language,
real-time job tracking, and tools to evaluate and
simulate system behaviour are some of the core fea-
tures that Borg provides to its users. Borg’s main
advantages are that it abstracts away the details of
resource management and failure handling, allow-
ing users to concentrate on application development
and writing logic for their jobs/services. It is highly
fault tolerant, ensures high availability and reliabil-
ity for the applications that run on it.

5.2 Architecture

Borg is composed of multiple cells where each borg
cell consists of a set of machines, a logically cen-
tralized controller called the Borgmaster, and each
machine in the cell runs a borg agent process called
the Borglet as shown in Fig 6.

5.2.1 Borgmaster

Each cell’s Borgmaster consists of two processes:
the main Borgmaster process and a separate sched-
uler (more on that in section 5.2.3). It coordinates
all the activities in the cell. Since a single master
can fail, every cell has five replicas of the Borgmas-
ter as a fault handling mechanism. When one of the

Figure 6: The high-level architecture of Borg: [16]

replicas fails, a leader election is held, and the pri-
mary Borgmaster, to whom the consumer submits
jobs, is chosen. The Borgmaster takes a snapshot
of its current state on a regular basis and saves it in
secure storage.

5.2.2 Borglet

Borglet is a cell-wide process that runs on all nodes.
It starts and stops tasks, restarts them if they fail,
manages local resources, and reports on the ma-
chine’s status to the Borgmaster. Borgmaster polls
each Borglet every few seconds to determine the
current state of the system and then sends additional
requests to the machines. Borglet will continue to
run even if all Borgmaster replicas fail, ensuring
that currently running tasks and services remain
available.

5.2.3 Scheduling

In this section, we will go over all that happens in
Borg from the time a job is submitted to the time
it is done. A client submits the work to the Borg
system, along with the job’s name, his name, and
the number of tasks in the job. If the job can be

15



Figure 7: State diagram for both jobs and tasks :
[16]

admitted based on its quota, the Borgmaster notes
it in its secure storage and adds it to the scheduler
queue. The scheduler sorts the jobs in the queue
from highest to lowest priority and chooses the top-
most job to be dispatched for execution. The Bor-
glet takes over the dispatched task and manages
everything relevant to the task. The Borglet also
sends the Borgmaster status updates on a regular
basis. The Borglet tells the Borgmaster when the
task is completed, and the Borgmaster makes the
required adjustments to its secure storage, updates
the state of the computer that completed the task,
and reports the results of the task to the client.

5.3 Design Goals

5.3.1 Job Submission

In Borg, a job is sent to a single Borgmaster. Before
doing something else, the Borgmaster makes a note
of the job, since it will be responsible for all aspects
of it. The job being submitted can be a list of tasks
that can be scheduled individually on various ma-
chines.Also, after the job has been submitted, the
client can still make changes to it.

Since the entire scheduling process is controlled
by a single server, load balancing can be optimised
and scheduling overheads are kept to a minimum.

Owing to the lack of a distributed submission, com-
munication overheads are significantly reduced. It
is much simpler to provide the consumer with a
global view of the system at any time.

But because the Borgmaster does not share the
scheduling load with any other nodes, communica-
tion links of Borgmaster are often more crowded
which can cause network congestion.

5.3.2 Priority, quota, and admission control

Each job that is submitted to the Borg system has a
priority assigned to it. Jobs are scheduled in order
of importance, from high to low. Using a Round-
Robin scheme based on arrival times, a total order
is imposed among jobs with the same priority. If a
higher priority task cannot be scheduled in the sys-
tem when a lower priority task is being completed,
the former can prempt. Preempting a production
task for another production task is not permitted
to stop cascading. In addition to priority, the user
often requests a certain amount of resources known
as quota. According to its quota, Borg accepts a
work for scheduling. It is possible that the user’s
work requirements after admission would surpass
this quota at some stage. In such instances, Borg
reduces the job’s priority while ensuring that the
product of the priority and modified quota is con-
stant at all times.

The priority system helps high-priority jobs to
be done more efficiently than low-priority jobs.
The priority and quota-based scheme ensures that
the user’s job is always completed, regardless of
whether the user has the right estimate of the
amount of resources available for his job.

But in some cases low-priority jobs can go un-
filled due to incoming high-priority jobs; they
might not be scheduled or even if they are sched-
uled, they are constantly preempted. Also in certain
situations, low priority jobs may be forced to give
up a portion of their shareable resources to high
priority jobs, affecting their latency.

16



5.3.3 Scheduling and Preemption

The scheduler takes over after the Borgmaster re-
ceives a job. The scheduler only works on individ-
ual tasks not jobs. It attaches the tasks to its pending
queue and prioritises them before dispatching them.
The main components of the scheduling algorithm
are feasibility testing and scoring. Feasibility test-
ing entails locating machines that meet the task’s
constraints and have all of the services needed. It’s
worth mentioning that when measuring available re-
sources, Borg often considers the resources already
allocated to low-priority tasks, since these could
be preempted to make room for the higher-priority
task. After determining the machines that are feasi-
ble, the “goodness” of each machine is calculated.
This stage is referred to as scoring. The scores are
certainly influenced by the user’s preferences, but
other factors include reducing the number of pre-
empted tasks, selecting machines that already have
the packages needed by the task mounted, spread-
ing tasks across power and failure domains, and
evenly distributing high and low priority jobs across
all machines. Both best-fit and worst-fit strategies
are used to generate a ranking, each with its own
set of advantages and disadvantages. The need to
score all of the available machines is eliminated
with a two-stage scheduling policy. Compromis-
ing on the user’s expectations increases the overall
performance of the system substantially.

Even if a component of the system fails, oper-
ating on tasks rather than jobs means that only a
portion of the job is impacted. The system is better
equipped in the event of a fault because activities
are distributed across power and fault domains.

Low-priority jobs, on the other hand, can go
starving. And even if they are scheduled quickly,
when they are preempted, their turnaround times
can be very long.

5.3.4 Fault Tolerance

The heartbeat message sent by the Borgmaster to
the Borglets is entirely responsible for fault de-
tection and recovery. All of the Borgmaster repli-

cas communicate in the same way. When a Bor-
glet crashes, the Borgmaster detects it and resched-
ules all tasks that were running on it based on the
most recent state for the crashed computer. If the
Borgmaster fails, however, the replicas elect a new
leader from among themselves. The system’s con-
dition is restored after the new elected leader meets
with all of the Borglets . As previously mentioned,
the Borgmaster takes a snapshot of its current state
on a regular basis and saves it in a safe storage. This
checkpoint can be used by the new leader to restore
the Borgmaster’s state (if it has skipped any recent
changes to the old Borgmaster).

Since the odds of all the Borgmaster replicas
crashing at the same time are extremely slim, al-
most all forms of crash failures are treated. Periodic
checkpointing reduces the amount of time it takes
to recover. One significant benefit is that a fault in
one part of the system has no effect on the activities
in the other parts, which will continue to be com-
pleted. As a result, in this model, spreading tasks
(of the same job) through machines makes the job
fault tolerant to a large extent.

However, upgrading the Borgmaster replicas
wastes a lot of computing power and time. The
checkpoints take up a lot of space, and most of
the time they’re useless because device failures are
extremely rare.

6 Conclusion

Clusters are used practically by all research labs
for their high performance computing needs. More-
over, most of the supercomputers are infact clusters
of several smaller but powerful computers. Cluster
middlewares manage the resources. They provide
an interface for the user to interact with the clus-
ter, giving an abstracted view to the user so that
user does not need to worry about the intricacies
such as resource allocation etc. Like any distributed
system, clusters are susceptible to faults and so to
provide a dependable system to the user, there must
be sufficient protocols to tolerate faults.

We have elaborated on the several design issues

17



and corresponding design choices and architectures.
We have also extensively described three common
cluster management systems, SLURM, Borg and
Linux-HA. While SLURM is a more customiz-
able and flexible cluster manager making it very
common among small clusters in research facilities.
Borg is the cluster management system for the clus-
ters at google. Google has large scale clusters with
several simultaneous job requests. Linux-HA is a
more commercial cluster management tool.

References

[1] Cisco server architectures. https:
//www.cisco.com/c/en/us/td/docs/
solutions/Enterprise/Data_Center/
DC_Infra2_5/DCInfra_1.html.

[2] Corosync. https://www.alteeve.com/w/
Corosync.

[3] Hawk. https://documentation.suse.
com/sle-ha/11-SP4/html/SLE-ha-all/
cha-ha-config-hawk.html.

[4] Linux-ha. http://www.linux-ha.org/
wiki/Main_Page.

[5] TOP 500. Top 500 november 2020.
https://www.top500.org/lists/
top500/2020/11/.

[6] Remzi H. Arpaci-Dusseau and Arpaci-
Dusseau Andrea C. Operating Systems: Three
Easy Pieces. Arpaci-Dusseau Books, LLC,
1.00 edition, 2015. http://pages.cs.wisc.
edu/~remzi/OSTEP/.

[7] ClusterLabs. Pacemaker. https:
//clusterlabs.org/pacemaker/doc/
en-US/Pacemaker/2.0/html-single/
Pacemaker_Explained/.

[8] Fujitsu. Fugaku specification. https:
//www.fujitsu.com/global/about/
innovation/fugaku/specifications/.

[9] Team Fujitsu. Fujitsu specification. https:
//www.fujitsu.com/global/about/
innovation/fugaku/specifications/.

[10] IBM. Summit specification. https:
//www.ibm.com/thought-leadership/
summit-supercomputer/.

[11] IIT KGP. Param shakti. http://www.hpc.
iitkgp.ac.in/.

[12] Alan Robertson. Linux-ha heartbeat system
design. In 4th Annual Linux Showcase &
Conference (ALS 2000), Atlanta, GA, October
2000. USENIX Association.

[13] Schultz Rod. Slurm basic configu-
ration and users. https://slurm.
schedmd.com/slurm_ug_2011/Basic_
Configuration_Usage.pdf?fbclid=
IwAR051AlhfpLyxNFEPGM47SVDTZ3Oqq5TDYsl6JLwGgasEAEN-qxWY4vp8kQ.

[14] T. Sterling. Condor: A Distributed Job Sched-
uler, pages 307–350. 2001.

[15] SLURM Team. Slurm workload manager doc-
umentation. https://www.slurm.schedmd.
com/.

[16] Abhishek Verma, Luis Pedrosa, Madhukar Ko-
rupolu, David Oppenheimer, Eric Tune, and
John Wilkes. Large-scale cluster management
at google with borg. In Proceedings of the
Tenth European Conference on Computer Sys-
tems, EuroSys ’15, New York, NY, USA, 2015.
Association for Computing Machinery.

[17] Carl A. Waldspurger. Memory resource
management in VMware ESX server. In
USENIX Symposium on Operating System De-
sign and Implementation (OSDI), pages 181–
194, 2002.

[18] Tim Wickberg. Introduction to slurm.
https://slurm.schedmd.com/SLUG17/
SlurmOverview.pdf, 2017.

18

https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/DC_Infra2_5/DCInfra_1.html
https://www.alteeve.com/w/Corosync
https://www.alteeve.com/w/Corosync
https://documentation.suse.com/sle-ha/11-SP4/html/SLE-ha-all/cha-ha-config-hawk.html
https://documentation.suse.com/sle-ha/11-SP4/html/SLE-ha-all/cha-ha-config-hawk.html
https://documentation.suse.com/sle-ha/11-SP4/html/SLE-ha-all/cha-ha-config-hawk.html
http://www.linux-ha.org/wiki/Main_Page
http://www.linux-ha.org/wiki/Main_Page
https://www.top500.org/lists/top500/2020/11/
https://www.top500.org/lists/top500/2020/11/
http://pages.cs.wisc.edu/~remzi/OSTEP/
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/2.0/html-single/Pacemaker_Explained/
https://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/2.0/html-single/Pacemaker_Explained/
https://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/2.0/html-single/Pacemaker_Explained/
https://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/2.0/html-single/Pacemaker_Explained/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
https://www.fujitsu.com/global/about/innovation/fugaku/specifications/
 https://www.ibm.com/thought-leadership/summit-supercomputer/
 https://www.ibm.com/thought-leadership/summit-supercomputer/
 https://www.ibm.com/thought-leadership/summit-supercomputer/
http://www.hpc.iitkgp.ac.in/
http://www.hpc.iitkgp.ac.in/
https://slurm.schedmd.com/slurm_ug_2011/Basic_Configuration_Usage.pdf?fbclid=IwAR051AlhfpLyxNFEPGM47SVDTZ3Oqq5TDYsl6JLwGgasEAEN-qxWY4vp8kQ
https://slurm.schedmd.com/slurm_ug_2011/Basic_Configuration_Usage.pdf?fbclid=IwAR051AlhfpLyxNFEPGM47SVDTZ3Oqq5TDYsl6JLwGgasEAEN-qxWY4vp8kQ
https://slurm.schedmd.com/slurm_ug_2011/Basic_Configuration_Usage.pdf?fbclid=IwAR051AlhfpLyxNFEPGM47SVDTZ3Oqq5TDYsl6JLwGgasEAEN-qxWY4vp8kQ
https://slurm.schedmd.com/slurm_ug_2011/Basic_Configuration_Usage.pdf?fbclid=IwAR051AlhfpLyxNFEPGM47SVDTZ3Oqq5TDYsl6JLwGgasEAEN-qxWY4vp8kQ
https://www.slurm.schedmd.com/
https://www.slurm.schedmd.com/
https://slurm.schedmd.com/SLUG17/SlurmOverview.pdf
https://slurm.schedmd.com/SLUG17/SlurmOverview.pdf


[19] Andy B. Yoo, Morris A. Jette, and Mark
Grondona. Slurm: Simple linux utility for
resource management. In Dror Feitelson,
Larry Rudolph, and Uwe Schwiegelshohn, ed-
itors, Job Scheduling Strategies for Parallel
Processing, pages 44–60, Berlin, Heidelberg,
2003. Springer Berlin Heidelberg.

19


	Introduction
	Design Issues and Architectures
	Job Scheduling
	Matchmaking
	Load Balancing
	Fairness Policies
	Parameters and Metrics

	Fault tolerance
	Dependability

	File system management
	Administrative policies

	Case Study - SLURM
	Introduction
	Design Goals
	Architecture
	Daemons
	Plugins and Configuration
	Node architecture
	Fault Tolerance

	User Features
	Command Line Interface
	Communications Layer
	Security
	Job Modes


	Case Study - Linux HA
	Introduction
	Pacemaker-(Linux-HA)
	Architecture

	Cluster Resource Manager
	Cluster Resource
	Monitoring Resources
	Resource-Score
	Resource Constraints
	Resource Allocation-Policy
	Resource Priority and Preemption
	Handling Resource Failure

	Corosync
	Features
	Quorum
	Working Principle

	Fencing
	Fencing Device
	Fencing Agent
	Working Principle


	Case Study - Borg
	Introduction
	Architecture
	Borgmaster
	Borglet
	Scheduling

	Design Goals
	Job Submission
	Priority, quota, and admission control
	Scheduling and Preemption
	Fault Tolerance


	Conclusion

