
Accelerating large graph algorithms on GPU using CUDA
Archisman Pathak, Kousshik Raj, Koustav Chowdhury, Rounak Patra

Satyam Porwal, Siddhant Agarwal, Sriyash Poddar
-

Department of Computer Science and Engineering, IIT Kharagpur

ABSTRACT
In recent times, the use of large-scale graphs involving millions
of vertices are quite common in various practical applications like
social networks, search engines, maps, etc., and often take up high
computational resources when processing such graphs for traver-
sal or finding shortest path between nodes. Although practical
sequential implementations are possible using high-end computers
and have been reported, such resources are not easily accessible.
Moreover, the performance of such algorithms degrades drastically
with increasing graph size. To this end, possiblity of parallelisa-
tion of graph algorithms using Graphical Processing Units (GPU)
have gained significant importance, considering their high compu-
tational power and affordability, though their restrictive program-
ming model is often difficult to get past. In this paper, we present
the parallelisation of three fundamental class of graph problem
- Breadth First Search, Single Source Shortest Path, and All-Pair
Shortest Path, using CUDA based implementation on GPUs. We
have also profiled the performance of the algorithms on a diverse
set of generated and procured large graphs and have observed
significant speedups as compared to the results of a sequential
algorithm.

KEYWORDS
Breadth-First search, GPU, CUDA, Graph Algorithms, Parallel Al-
gorithms, Shortest Path Algorithms

1 INTRODUCTION
Graph algorithms are a very common requirement in several prob-
lem domains including several scientific and engineering applica-
tions, which involves processing large graphs that have millions, if
not billions, of vertices. Fundamental graph operations like breadth-
first search (BFS), depth-first search (DFS), shortest path, etc., occur
frequently in these domains. While fast sequential implementa-
tions of the famous algorithms for these problems exists [1, 2], they
are of the order of number of vertices and edges. On very large
graphs, these algorithms become practically impractical. But when
we switch to using parallel algorithms, we can achieve much more
reasonable and practical implementations, in terms of both time
and hardware cost on these basic graph problems [3].

Commodity graphics hardware has become a cost-effective par-
allel platform to solve many general problems. Many problems in
the field of image processing, computer vision, signal processing
[4], etc., have benefited from its speed and parallel processing capa-
bilities. Paulius et. al [5] provided a GPU based implementation of
All-Pairs Shortest Paths Problem, but this was severely limited by
the memory capacity and architecture of the existing GPUs of those
times. These were then optimized for graphics operations and their
programming model is highly restrictive. Hence all the algorithms

were disguised as graphic rendering passes with programmable
shaders to interpret the data.

Nvidia’s Compute Unified Device Architecture (CUDA) offers
an alternative to such a programming model. In this paper, we will
discuss various CUDA-based implementation of the solutions to
these few fundamental graph problems and show results obtained
by Breadth First Search (BFS), Single-Source Shortest Path (SSSP)
and All-Pair Shortest Path (APSP) for large graphs on a Nvidia GPU.

The paper is organised as follows. Section 2 tackles the fine
grained details of the implementation of any generic graph algo-
rithm on CUDA. In Section 3, 4, 5, we present some parallelised
approaches for the BFS, SSSP, and APSP problems. Then, we discuss
the experiments performed on the presented algorithms using large
graph datasets in Section 6. And finally in Section 7 we conclude
our work.

2 CUDA IMPLEMENTATION
In general, though GPUs offer high computing powers by using
the SIMD class of architectures, they often come up with highly re-
strictive programming model. Because of this, we try to use CUDA,
which provides a high-level interface which can be used as an ex-
tension of the C/C++ programming language, thereby making it
quite straightforward to implement algorithms in it. Any GPU tries
to execute a parallel algorithm by creating multiple threads and
scheduling them for execution in batches called warps. Each thread
executes a common set of instructions (called kernel) along with a
unique thread identifier which allows us to differentiate the tasks
it performs. For example, in the parallel BFS (Section 3) and SSSP
(Section 4) algorithms each thread is responsible for a single vertex,
whereas in the naive parallel Floyd-Warshall (Section 5.2) algorithm,
each thread takes care of a pair of vertices. Now we will look at
some implementation technicalities.

2.1 Graph Representation in CUDA
In order to fully utilise the functionalities that a GPU paired with
CUDA can offer, we need a suitable way to represent our input
graph for the algorithms to work with. As we know, an input graph
can be represented by an adjacency list or an adjacency matrix.
But directly working with such a format will not result in optimal
performance because of memory access of uncontinguous segment
of data. To overcome this, we try to reframe the given input into a
form which facilitates contiguous memory access during execution.
We will do so both for the adjacency list as well as the adjacency
matrix.

Assume, we are given a graph 𝐺 (𝑉 , 𝐸,𝑊), where 𝑉 is the set
of vertices, 𝐸 and𝑊 are the set of edges and their corresponding
weights. Let’s ignore the weights for now and focus on the vertices
and edges, as it is easy to incorporate the weights into any graph

HP3 Group 2

Figure 1: Graph representation with vertex list pointing to a
packed edge list

representation. We are going to convert the original adjacency
list representation into a compact adjacency list form of a single
contiguous array 𝐸𝑎 . To do so, we number the vertices from 1 to
|𝑉 |, after which we try to store all the endpoints of edges with
one of the endpoint being vertex 𝑖, ∀1 ≤ 𝑖 ≤ |𝑉 | in order in 𝐸𝑎 . To
determine the endpoint of each edge list, we start each of them with
their size. But, with this array its difficult to find the starting point
of a edge list of a particular vertex in 𝑂 (1). To make this possible,
we add another auxiliary array 𝑉𝑎 of size |𝑉 | where each element
in it points to the start position of the edge set of the corresponding
vertex in 𝐸𝑎 . Fig. 1 exemplifies this clearly. To incorporate weights
into this representation, its enough to introduce another array𝑊𝑎
of same size as 𝐸𝑎 with each element in it holding the weight of
the corresponding edge in 𝐸𝑎 .

Its much easier to convert the adjacency matrix of a graph repre-
sentation into a suitable form for our purpose. An adjacency matrix
is a 2D array 𝐴 of size |𝑉 | × |𝑉 |, in which the element 𝐴[𝑢, 𝑣] holds
the weight of the edge from vertex 𝑢 to 𝑣 (this means it can repre-
sent only simple graphs). In this case, we will just flatten the matrix
𝐴 into a 1D array 𝐸 of size |𝑉 |2, with an element 𝐴[𝑢, 𝑣] mapping
to the corresponding element 𝐸 [𝑢 ∗ |𝑉 | + 𝑣]. Now, we can use the
array 𝐸 in our algorithms.

3 BREADTH FIRST SEARCH
In the BFS problem you are given an undirected, unweighted graph
𝐺 (𝑉 , 𝐸) and a source vertex 𝑆 , and we need to find the minimum
number of edges needed to reach every vertex in 𝐺 from source
vertex 𝑆 . An asymptotically optimal sequential solution for the
problem takes 𝑂 (𝑉 + 𝐸) time. BFS has been used in state space
searching, graph partitioning, automatic theorem proving, etc., and
is one of the most used graph orientation in various practical graph
algorithms. We will now discuss various CUDA based approaches
to tackle the problem of BFS.

3.1 First Approach: Parallel BFS
In this approach, we will use level synchronization to solve BFS.
The graph is traversed level by level and once visited it is not visited
again. The BFS distance stores the level at which the nodes were
processed. The 𝑙𝑒𝑣𝑒𝑙 variable keeps track of the level being pro-
cessed. Maintaining a queue for each vertex would incur additional
overheads and thereby slow down the speed of execution. Instead
in this implementation we give one thread to each vertex. In each
iteration, if a vertex is at the same level as the level being processes,

it fetches its cost from the cost array and updates its neighbours
if more than ’its cost + 1’ i.e. the neighbour was univisted. Here, a
global flag keeps track of the changes made in each iteration. If no
change is made in an iteration it implies that all vertices have been
visited and BFS completed. The above approach has been presented
in Algorithm 1 and the corresponding kernel in Algorithm 2.

Algorithm 1 parallelBFS_Host
1: Input: 𝑉𝑎, 𝐸𝑎, 𝑆 ⊲ The graph 𝐺 (𝑉 , 𝐸) and source 𝑆
2: Create distance array 𝐷𝑖𝑠𝑡𝑎 , and parent array 𝑃𝑎 of size |𝑉 |
3: Initialise all elements of 𝐷𝑖𝑠𝑡𝑎, 𝑃𝑎 to∞
4: 𝐷𝑎 [𝑆] = 0
5: 𝑙𝑒𝑣𝑒𝑙 = 0
6: 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒

7: while 𝑓 𝑙𝑎𝑔 do
8: 𝑓 𝑙𝑎𝑔 = 𝐹𝑎𝑙𝑠𝑒

9: Invoke parallelBFS_kernel(𝑙𝑒𝑣𝑒𝑙 , 𝑉𝑎 ,𝐸𝑎 ,𝐷𝑖𝑠𝑡𝑎 ,𝑓 𝑙𝑎𝑔).
10: 𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙 + 1

Algorithm 2 parallelBFS_kernel
1: Input: 𝑙𝑒𝑣𝑒𝑙 , 𝑉𝑎 ,𝐸𝑎 ,𝐷𝑖𝑠𝑡𝑎 ,𝑓 𝑙𝑎𝑔
2: 𝑡𝑖𝑑 = getThreadID
3: 𝑓 = 𝐹𝑎𝑙𝑠𝑒

4: if 𝑡𝑖𝑑 < 𝑉𝑎𝑠𝑖𝑧𝑒 and 𝐷𝑖𝑠𝑡𝑎 [𝑡𝑖𝑑] = 𝑙𝑒𝑣𝑒𝑙 then
5: 𝑢 = 𝑡𝑖𝑑

6: for all 𝑣 = neighbours of 𝑢 do
7: if 𝑙𝑒𝑣𝑒𝑙 + 1 < 𝐷𝑖𝑠𝑡𝑎 [𝑣] then
8: 𝐷𝑖𝑠𝑡𝑎 [𝑣] = 𝑙𝑒𝑣𝑒𝑙 + 1
9: 𝑓 = 𝑇𝑟𝑢𝑒

10: if 𝑓 = 𝑇𝑟𝑢𝑒 then
11: 𝑓 𝑙𝑎𝑔 = 𝑇𝑟𝑢𝑒

3.2 Second Approach: Queue BFS
In this approach as well, we will use level synchronization to solve
BFS. Like we have seen earlier, the graph is traversed level by level
and once visited it is not visited again. But here, we maintain a
queue 𝑐𝑄 of the vertices to be visited. A cost array, 𝐶𝑎 , stores the
minimal number of edges of each vertex from source S. In each
iteration, we traverse through the queue, and for each vertex 𝑢, if
we find a unvisited neighbour 𝑣 , we update the distance value for
𝑣 , and add it to the queue of vertices to be expanded next, 𝑛𝑄 . We
use 𝑎𝑡𝑜𝑚𝑖𝑐𝑀𝑖𝑛 and 𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑 operations to avoid race conditions.
The above approach has been presented in Algorithm 3 and the
corresponding kernel in Algorithm 4.

3.3 Third Approach: Scan BFS
A work-efficient parallel BFS algorithm should perform 𝑂 (𝑉 + 𝐸)
work. To achieve this, each iteration should examine only the edges
and vertices in that iteration’s logical edge and vertex-frontiers,
respectively. Edge frontiers are vertices that needs to be examined in
the next step of the BFS. In this algorithm, frontier is managed out-
of-core and is fully produced in off-chip memory for consumption
by the next BFS iteration after a global synchronization step.

Accelerating large graph algorithms on GPU using CUDA

Algorithm 3 queueBFS_Host
1: Input: 𝑉𝑎, 𝐸𝑎, 𝑆 ⊲ The graph 𝐺 (𝑉 , 𝐸) and source 𝑆
2: Create cost array 𝐷𝑖𝑠𝑡𝑎 and parent array 𝑃𝑎 of size |𝑉 | and

initialise all values to∞
3: Create two array 𝑐𝑄 and 𝑛𝑄 , and initialise it to 𝑆 and 𝑛𝑢𝑙𝑙

respectively.
4: 𝐷𝑖𝑠𝑡𝑎 [𝑆] = 0
5: 𝑃𝑎 [𝑆] = −1
6: 𝑙 = 0 ⊲ Start with the source vertex
7: while 𝑐𝑄𝑠𝑖𝑧𝑒 > 0 do
8: Invoke queueBFS(𝑙 , 𝑉𝑎 , 𝐸𝑎 , 𝐷𝑖𝑠𝑡𝑎 , 𝑃𝑎 , 𝑐𝑄 , 𝑛𝑄)
9: 𝑠𝑤𝑎𝑝 (𝑐𝑄, 𝑛𝑄)
10: Set 𝑛𝑄 to 𝑛𝑢𝑙𝑙
11: 𝑙 = 𝑙 + 1

Algorithm 4 queueBFS_kernel
1: Input: 𝑙 , 𝑉𝑎 , 𝐸𝑎 , 𝐷𝑖𝑠𝑡𝑎 , 𝑃𝑎 , 𝑐𝑄 , 𝑛𝑄 ⊲ The graph 𝐺 (𝑉 , 𝐸) and

source 𝑆
2: 𝑡𝑖𝑑 = getThreadID
3: if 𝑡𝑖𝑑 < 𝑐𝑄𝑠𝑖𝑧𝑒 then
4: 𝑢 = 𝑐𝑄 [𝑡𝑖𝑑]
5: for all 𝑣 = neighbours of 𝑢 do
6: if 𝐷𝑖𝑠𝑡𝑎 [𝑣] = ∞ and 𝑎𝑡𝑜𝑚𝑖𝑐𝑀𝑖𝑛(𝐷𝑖𝑠𝑡𝑎 [𝑣], 𝑙 + 1) = ∞

then
7: 𝑃𝑎 [𝑣] = 𝑢
8: 𝑝𝑜𝑠 = 𝑎𝑡𝑜𝑚𝑖𝑐𝐴𝑑𝑑 (𝑛𝑄𝑠𝑖𝑧𝑒 , 1)
9: 𝑛𝑄 [𝑝𝑜𝑠] = 𝑣

The intuition behind the linear optimisation of BFS is quite same
as the standard BFS. We maintain a queue of unvisited vertex, level-
synchronised, and we terminate when the queue is empty. The only
challenge is to populate this queue efficiently. Here, we employ
prefix scan to find out the position of vertices in queue for the next
iteration. For each vertex in the queue, we assign a new thread to
compute the frontiers for the next iteration.

The above approach has been presented in Algorithm 5, and the
kernels in the subsequent Algorithms 6, 7, 8 and 9.

4 SINGLE-SOURCE SHORTEST PATH
In the Single Source Shortest Path (SSSP) problem you are given a
weighted graph 𝐺 (𝑉 , 𝐸,𝑊) with non-negative weights (we do not
consider negative weights in our algorithm) and a source vertex 𝑆 ,
and we need to find a path to every vertex 𝑉 from source 𝑆 such
that the sum of weights in it is the smallest of all such paths. One
of the optimal sequential algorithm is the well known Dijkstra’s
algorithm [6] which has a time complexity of 𝑂 (𝑉𝑙𝑜𝑔𝑉 + 𝐸) when
implemented with Fibonacci Heaps [7]. In this section, we will
try to parallelise the above algorithm to speed up its execution.
We will consider the input graph in the above mentioned compact
adjacency list format with elements in 𝑉𝑎 pointing to the start of
their adjacency list, 𝐸𝑎 and𝑊𝑎 consisting of all the edges and their
corresponding weights, respectively.

Algorithm 5 ScanBFS_Host
1: Input: 𝑉𝑎, 𝐸𝑎, 𝑆 ⊲ The graph 𝐺 (𝑉 , 𝐸) and source 𝑆
2: Create updating cost array 𝐷𝑒𝑔𝑎 , 𝑃𝑟𝑒𝐷𝑒𝑔𝑎 of size |𝑉 | and ini-

tialise all values to 0
3: Create cost array 𝐷𝑖𝑠𝑡𝑎 of size |𝑉 | and initialise all values to∞
4: Create mask array 𝑃𝑎 of size |𝑉 | and initialise all values to −1
5: Create two array 𝑐𝑄 and 𝑛𝑄 , and initialise it to 𝑆 and 𝑛𝑢𝑙𝑙

respectively.
6: 𝐷𝑖𝑠𝑡𝑎 [𝑆] = 0
7: 𝑃𝑎 [𝑆] = −1
8: 𝑙 = 0 ⊲ Start with the source vertex
9: while 𝑐𝑄𝑠𝑖𝑧𝑒 > 0 do
10: Invoke nextLayer(𝑙 , 𝑉𝑎 , 𝐸𝑎 , 𝑃𝑎 , 𝐷𝑖𝑠𝑡𝑎 , 𝑐𝑄)
11: Invoke countDegrees(𝑉𝑎 , 𝐸𝑎 , 𝑃𝑎 , 𝑐𝑄 , 𝐷𝑒𝑔𝑎)
12: Invoke scanDegrees(𝑐𝑄𝑠𝑖𝑧𝑒 , 𝐷𝑒𝑔𝑎, 𝑃𝑟𝑒𝐷𝑒𝑔𝑎)
13: Perform Prefix Sum on 𝐷𝑒𝑔𝑎 , and store the results in

𝑃𝑟𝑒𝐷𝑒𝑔𝑎
14: 𝑛𝑄 = 𝑃𝑟𝑒𝐷𝑒𝑔𝑎 [𝑐𝑄𝑠𝑖𝑧𝑒/𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆]
15: Invoke populateNextQueue(𝑉𝑎 , 𝐸𝑎 , 𝑃𝑎 , 𝑐𝑄 ,𝑛𝑄 , 𝐷𝑒𝑔𝑎 ,

𝑃𝑟𝑒𝐷𝑒𝑔𝑎)
16: 𝑐𝑄 = 𝑛𝑄
17: 𝑙 = 𝑙 + 1

Algorithm 6 nextLayer
1: Input: 𝑙 , 𝑉𝑎 , 𝐸𝑎 , 𝑃𝑎 , 𝐷𝑖𝑠𝑡𝑎 , 𝑐𝑄
2: 𝑡𝑖𝑑 = getThreadId() ⊲ Get the Id of the thread
3: if 𝑡𝑖𝑑 < 𝑐𝑄𝑠𝑖𝑧𝑒 then
4: 𝑢 = 𝑐𝑄 [𝑡𝑖𝑑]
5: for all 𝑣 = neighbours of 𝑢 do
6: if 𝐷𝑖𝑠𝑡𝑎 [𝑣] > 𝑙 + 1 then
7: 𝐷𝑖𝑠𝑡𝑎 [𝑣] = 𝑙 + 1
8: 𝑃𝑎 [𝑣] = 𝑢

Algorithm 7 countDegrees
1: Input: 𝑉𝑎 , 𝐸𝑎 , 𝑃𝑎 , 𝑐𝑄 , 𝐷𝑒𝑔𝑎
2: 𝑡𝑖𝑑 = getThreadId() ⊲ Get the Id of the thread
3: if 𝑡𝑖𝑑 < 𝑐𝑄𝑠𝑖𝑧𝑒 then
4: 𝑢 = 𝑐𝑄 [𝑡𝑖𝑑]
5: 𝑑 = 0
6: for all 𝑣 = neighbours of 𝑢 do
7: if 𝑃𝑎 [𝑣] = 𝐸𝑎 .𝑖𝑛𝑑𝑒𝑥 (𝑣)𝑎𝑛𝑑𝑣 ≠ 𝑢 then
8: 𝑑 = 𝑑 + 1
9: 𝐷𝑒𝑔𝑎 [𝑡𝑖𝑑] = 𝑑

4.1 First Approach: Bugged Parallel Djikstra
One of the foremost algorithms that was presented for this purpose
is by Harish et. al [8]. The algorithm presented in their work relies
on the fact that a sequential algorithm of the Djikstra’s algorithm
finalises the shortest distance from the source of only a single vertex
every iteration, which is the bottleneck for the algorithm. But in
large scale graphs, in every iteration the distance of scores of such
vertices can possibly be confirmed. This fact is leveraged by their
work, and we have the following algorithm.

HP3 Group 2

Algorithm 8 scanDegrees
1: Input: 𝑐𝑄𝑠𝑖𝑧𝑒 , 𝐷𝑒𝑔𝑎, 𝑃𝑟𝑒𝐷𝑒𝑔𝑎
2: 𝑡𝑖𝑑 = getThreadId() ⊲ Get the Id of the thread
3: if 𝑡𝑖𝑑 < 𝑐𝑄𝑠𝑖𝑧𝑒 then
4: Create a shared array 𝑝𝑟𝑒𝑆𝑢𝑚 of size 𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆
5: 𝑚 = 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥

6: 𝑝𝑟𝑒𝑆𝑢𝑚[𝑚] = 𝐷𝑒𝑔𝑎 [𝑡𝑖𝑑]
7: 𝑠𝑦𝑛𝑐_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
8: 𝑛 = 2
9: while 𝑛 ≤ 𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆 do
10: if 𝑏𝑖𝑡𝑤𝑖𝑠𝑒𝐴𝑛𝑑 (𝑚,𝑛 − 1) = 0 and 𝑡𝑖𝑑 + (2 ∗ 𝑛) < 𝑐𝑄𝑠𝑖𝑧𝑒

then
11: 𝑝𝑟𝑒𝑆𝑢𝑚[𝑚]+ = 𝑝𝑟𝑒𝑆𝑢𝑚[𝑡𝑖𝑑 + (2 ∗ 𝑛)]
12: 𝑠𝑦𝑛𝑐_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
13: 𝑛 = 2 ∗ 𝑛
14: if 𝑚 = 0 then
15: 𝑃𝑟𝑒𝐷𝑒𝑔𝑎 [𝑡𝑖𝑑/𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆 + 1] = 𝑝𝑟𝑒𝑆𝑢𝑚[𝑚]
16: 𝑛 = 𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆
17: while 𝑛 > 1 do
18: if 𝑏𝑖𝑡𝑤𝑖𝑠𝑒𝐴𝑛𝑑 (𝑚,𝑛 − 1) = 0 and 𝑡𝑖𝑑 + (𝑛/2) < 𝑐𝑄𝑠𝑖𝑧𝑒

then
19: 𝑡𝑒𝑚𝑝 = 𝑝𝑟𝑒𝑆𝑢𝑚[𝑚]
20: 𝑝𝑟𝑒𝑆𝑢𝑚[𝑚]+ = 𝑝𝑟𝑒𝑆𝑢𝑚[𝑡𝑖𝑑 + (𝑛/2)]
21: 𝑝𝑟𝑒𝑆𝑢𝑚[𝑡𝑖𝑑 + (𝑛/2)] = 𝑡𝑒𝑚𝑝
22: 𝑠𝑦𝑛𝑐_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
23: 𝑛 = 𝑛/2
24: 𝐷𝑒𝑔𝑎 [𝑡𝑖𝑑] = 𝑝𝑟𝑒𝑆𝑢𝑚[𝑚]

Algorithm 9 populateNextQueue
1: Input: 𝑉𝑎 , 𝐸𝑎 , 𝑃𝑎 , 𝑐𝑄 , 𝑛𝑄 , 𝐷𝑒𝑔𝑎 , 𝑃𝑟𝑒𝐷𝑒𝑔𝑎
2: 𝑡𝑖𝑑 = getThreadId() ⊲ Get the Id of the thread
3: if 𝑡𝑖𝑑 < 𝑐𝑄𝑠𝑖𝑧𝑒 then
4: Initialise a shared variable 𝑖
5: if 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥 = 0 then
6: 𝑖 = 𝑃𝑟𝑒𝐷𝑒𝑔𝑎 [𝑁𝑈𝑀_𝑇𝐻𝑅𝐸𝐴𝐷𝑆]
7: 𝑠𝑦𝑛𝑐_𝑡ℎ𝑟𝑒𝑎𝑑𝑠
8: 𝑠 = 0
9: if 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥 ≠ 0 then
10: 𝑠 = 𝐷𝑒𝑔𝑎 [𝑡𝑖𝑑 − 1]
11: 𝑢 = 𝑐𝑄 [𝑡𝑖𝑑]
12: 𝑐 = 0
13: for all 𝑣 = neighbours of 𝑢 do
14: if 𝑃𝑎 [𝑣] = 𝐸𝑎 .𝑖𝑛𝑑𝑒𝑥 (𝑣) and 𝑣 ≠ 𝑢 then
15: 𝑛𝑄 [𝑖 + 𝑠 + 𝑐] = 𝑣
16: 𝑐 = 𝑐 + 1

In the algorithm, other than the input, an array 𝐶𝑎 to store the
shortest distance from the source vertex, a boolean mask array𝑀𝑎
where it marks whether a potential shortest path to some vertex
passes through this vertex, and the updating cost array 𝑈𝑎 which
acts as an auxillary for updating the cost array which otherwise
would result in data hazards. It also maintains a boolean variable
𝑓 𝑙𝑎𝑔 to determine the termination of the algorithm.

The algorithm is executed in multiple iterations, and each it-
eration consists of two phases. In the first phase, all the vertices
marked in 𝑀𝑎 are treated as potential vertices through which a
shortest path from source to some vertex can pass through, and the
distance to the neighbouring vertices of such vertices are updated
if they are found to be shorter by passing through them. In this
phase, all the updates occur in 𝑈𝑎 and the shortest distances are
read from𝐶𝑎 . This is done to prevent Read After Write (RAW) data
hazards that crop up due to the parallelised execution. The pseudo
code for this is shown in Algorithm 11.

In the end of this phase we have a possibly shorter path at 𝑈𝑎 ,
which has to be transferred to the array 𝐶𝑎 for the next iteration.
This is taken care of in the second phase of the algorithm. Here,
the cost of each vertex in 𝐶𝑎 is compared to the one maintained in
𝑈𝑎 and if a better cost is encountered, the corresponding distance
in 𝐶𝑎 is updated. Furthermore, this vertex is marked true in𝑀𝑎 , as
now there might be a shortest path through this vertex. If there
is any such vertex, then the 𝑓 𝑙𝑎𝑔 variable is marked true as well.
Otherwise, 𝑓 𝑙𝑎𝑔 will not be updated, resulting in the termination
of the algorithm. The parallel execution takes place in these two
phases, where each vertex is managed by a thread. But care has
to be taken to synchronise all the threads before calling the next
phase. This phase and the host code is exemplified in Algorithm 10
and Algorithm 12, respectively. The final shortest distance is stored
in the array 𝐶𝑎 .

Algorithm 10 SSSP_Host
1: Input: 𝑉𝑎, 𝐸𝑎,𝑊𝑎, 𝑆 ⊲ The graph 𝐺 (𝑉 , 𝐸,𝑊) and source 𝑆
2: Create updating cost array𝑈𝑎 of size |𝑉 | and initalise all values

to∞
3: Create cost array 𝐶𝑎 of size |𝑉 | and initalise all values to∞
4: Create mask array 𝑀𝑎 of size |𝑉 | and initialise all values to
𝑓 𝑎𝑙𝑠𝑒

5: 𝑈𝑎 [𝑆] = 0
6: 𝐶𝑎 [𝑆] = 0
7: 𝑀𝑎 [𝑆] = 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 ⊲ Start with the source vertex
8: while 𝑓 𝑙𝑎𝑔 do
9: 𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒

10: for all 𝑣 ∈ 𝑉 in parallel do
11: Invoke SSSP_Phase1(𝑉𝑎 , 𝐸𝑎 ,𝑊𝑎 , 𝐶𝑎 ,𝑈𝑎 ,𝑀𝑎)
12: Invoke SSSP_Phase2(𝐶𝑎 ,𝑈𝑎 ,𝑀𝑎 , 𝑓 𝑙𝑎𝑔)

Algorithm 11 SSSP_Phase1
1: Input: 𝑉𝑎, 𝐸𝑎,𝑊𝑎,𝐶𝑎,𝑈𝑎, 𝑀𝑎
2: 𝑡𝑖𝑑 = getThreadId() ⊲ Get the Id of the thread
3: if 𝑀𝑎 [𝑡𝑖𝑑] = 𝑡𝑟𝑢𝑒 then
4: 𝑀𝑎 [𝑡𝑖𝑑] = 𝑓 𝑎𝑙𝑠𝑒
5: for all neighbours 𝑛𝑖𝑑 of 𝑡𝑖𝑑 do ⊲ Line 6, 7 must be atomic
6: if 𝑈𝑎 [𝑛𝑖𝑑] > 𝐶𝑎 [𝑡𝑖𝑑] +𝑊𝑎 [𝑛𝑖𝑑] then
7: 𝑈𝑎 [𝑛𝑖𝑑] = 𝐶𝑎 [𝑡𝑖𝑑] +𝑊𝑎 [𝑛𝑖𝑑]

Accelerating large graph algorithms on GPU using CUDA

Algorithm 12 SSSP_Phase2
1: Input: 𝐶𝑎,𝑈𝑎, 𝑀𝑎, 𝑓 𝑙𝑎𝑔
2: 𝑡𝑖𝑑 = getThreadId() ⊲ Get the Id of the thread
3: if 𝐶𝑎 [𝑡𝑖𝑑] > 𝑈𝑎 [𝑡𝑖𝑑] then
4: 𝑀𝑎 [𝑡𝑖𝑑] = 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒

5: 𝐶𝑎 [𝑡𝑖𝑑] = 𝑈𝑎 [𝑡𝑖𝑑]

4.2 Second Approach: Corrected Version
The above algorithm might look perfectly fine at a first glance, but
hidden within it is an unsuspecting mistake with a devastating
consequence. Let us iterate through the algorithm once more. The
host code in Algorithm 10 will work fine as long as the individual
phases does what they are supposed to do. Now let’s move on to
phase two in Algorithm 12, assuming the phase one works fine.
There seems to be a race condition in line 4 when assigning 𝑡𝑟𝑢𝑒 to
the variable 𝑓 𝑙𝑎𝑔. But, in CUDA,multiplewrites to the same location
by different threads will have an undetermined effect except for the
fact that at least one of the writes will execute, which is enough for
our scenario. So there is nothing wrong in phase two as well.

But, in phase 1, a similar race condition occurs which is not as
benign. The 𝑈𝑎 array is used so that directly updating 𝐶𝑎 might
result in RAW data hazard. But this still fails to resolve the WAW
data hazard that occurs in𝑈𝑎 in line 6 and 7 of Algorithm 11. For
example, suppose two threads are executing on behalf of the vertex
𝑣1 and 𝑣2 respectively and both of which happen to have a com-
mon neighbour 𝑛𝑖𝑑 , for which they execute line 6 simultaneously.
Moreover, assume that the condition evaluates to 𝑡𝑟𝑢𝑒 in both cases.
Then, they both will execute line 7 for 𝑛𝑖𝑑 and update𝑈𝑎 [𝑛𝑖𝑑], but
only one of the two values will remain in the end.

For our algorithm to be correct, we need the lesser of the two
values to remain, but this cannot be ensured during runtime. Such
errors might start cascading, thereby resulting in a completely
erroneous result. To rectify this, we must ensure that at the end of
simultaneous multiple executions of line 7 for a particular node, the
smallest value remains. This might be difficult to manage directly,
but if we try to execute both line 6 and 7 atomically [9], we have
an indirect solution at hand. Though this update might result in a
slight slow down of the program, we can ensure the validity of our
output.

4.3 Thread Approach: Thread Coarsening
Thread Coarsening is an optimisation in which instructions exe-
cuted by a number of different threads are merged into a single
thread [10]. Thus in effect we are executing a smaller number of
larger i.e. more coarse-grained threads in comparison to before
[11].

Thread Coarsening evidently leads to a reduction in parallelism.
This can have both beneficial and detrimental effects , and the
observed result closely depends on the thread coarsening factor, the
number of threads that we are merging into one. On one hand ,
Thread coarsening would lead to lesser number of thread launches,
and thus potentially reducing the number of thread synchronisation
barriers and exploiting hardware instruction-level parallelism [12],
whereas on the other hand increased computation by a single thread

could lead to increased resource consumption of the kernel and
also increased cache pressure [11].

Selecting the best coarsening factor thus is a trade-off between
exploiting thread-level parallelism and avoiding execution of re-
dundant instructions [13] and forms the crux of any coarsening
based optimisation.

Thread Coarsening can be implemented either manually or as a
semi-automatic, auto-tuning based or as a machine-learning based
optimisation [11]. In our work, we have used the manual approach,
whereby we manually merged the computation of coarsening factor
number of threads into a single thread in the SSSP kernels. The
results we obtained are summarised in Section 6.3.2 below.

5 ALL PAIR SHORTEST PATH
In the All-Pair Shortest Path problem (APSP) you are given a
weighted graph 𝐺 (𝑉 , 𝐸,𝑊) with non-negative weights and we are
required to find the least weighted path from every vertex to every
other vertex in the graph. One obvious approach to this problem is
to run Djikstra’s algorithm repeatedly from every source. This algo-
rithm runs in 𝑂 (𝑉 2𝑙𝑜𝑔𝑉 + 𝐸𝑉). Though this requires complex data
structures such as Fibonacci Heaps, it runs significantly faster than
other known algortihms for graphs that are not particularly dense.
Another one of the most popular algorithms is Floyd Warshall’s
Algorithm [14]. It takes 𝑂 (𝑉 3) time and 𝑂 (𝑉 2) space, irrespective
of the number of edges. While the asymptotic complexity is much
worse for the generic graph, this runs faster for dense graphs due to
the much smaller overhead. We will now explore possible parallel
solutions for this problem.

5.1 First Approach: Using SSSP
As mentioned above, a parallelised solution for APSP can be imple-
mented by running the parallelised SSSP from all the vertices, as
source, sequentially. Though we reduce the scope for parallelism
through such a method, it does have a significant advantage of
saving space while running on the GPU. We might need an overall
𝑂 (𝑉 2) space to store the final results, but we need only𝑂 (𝑉) space
in the GPU, as each source vertex runs independent of the other.
This significantly reduces the cost of processing a large graph, albeit
by trading off time. This is demonstrated in Algorithm 13.

5.2 Second Approach: Naive Floyd-Warshall
The problem with our previous approach is that running SSSP for
each vertex sequentially, drastically reduces our parallelism. So, by
using a significantly higher space in the GPU, at the order of𝑂 (𝑉 2),
we look for an algorithm that has much higher scope of running
faster when parallelised, and this has led us to a parallelised version
of Floyd-Warshall’s algorithm [5]. Since this requires 𝑂 (𝑉 2) space,
it is not feasible to go beyond a few thousand vertices on commonly
available GPUs due to memory limitations, but this possibly gives
us a much higher speedup when implemented smartly. We will first
start with a naive parallelisation of Floyd-Warshall.

We use an adjacency matrix to represent our weighted graph
instead of the compact adjacency list used for the previous algo-
rithms, as this is much more practical for this algorithm. In the
sequential version, we will find this algorithm implemented in |𝑉 |
iterations, and in each iteration, every vertex pair is updated their

HP3 Group 2

Algorithm 13 APSP_Using_SSSP
1: Input: 𝑉𝑎, 𝐸𝑎,𝑊𝑎 ⊲ The graph 𝐺 (𝑉 , 𝐸,𝑊)
2: Create updating cost array𝑈𝑎 of size |𝑉 |
3: Create cost array 𝐶𝑎 of size |𝑉 |
4: Create mask array 𝑀𝑎 of size |𝑉 | and initialise all values to
𝑓 𝑎𝑙𝑠𝑒

5: Create a 2d output array 𝑂𝑎 of size |𝑉 | x |𝑉 |
6: for all 𝑆 ∈ 𝑉 do
7: Assign∞ to all values of𝑈𝑎 and 𝐶𝑎
8: 𝑈𝑎 [𝑆] = 𝐶𝑎 [𝑆] = 0
9: 𝑀𝑎 [𝑆] = 𝑓 𝑙𝑎𝑔 = 𝑡𝑟𝑢𝑒 ⊲ Start with the source vertex
10: while 𝑓 𝑙𝑎𝑔 do
11: 𝑓 𝑙𝑎𝑔 = 𝑓 𝑎𝑙𝑠𝑒

12: for all 𝑣 ∈ 𝑉 in parallel do
13: Invoke SSSP_Phase1(𝑉𝑎 , 𝐸𝑎 ,𝑊𝑎 , 𝐶𝑎 ,𝑈𝑎 ,𝑀𝑎)
14: Invoke SSSP_Phase2(𝐶𝑎 ,𝑈𝑎 ,𝑀𝑎 , 𝑓 𝑙𝑎𝑔)
15: Copy the distances in 𝐶𝑎 to 𝑂𝑎 [𝑆]

distance by assuming the shortest path passes through a particular
vertex 𝑘 , which remains constant throughout a iteration and is dif-
ferent for every iteration. Parallelising this, we arrive at Algorithm
14. Though line 5 might look like it suffers from RAW or WAR
inconsistencies, the algorithm works properly irrespective which
version of the value used, either the updated value or the old value.
This is because the value updated could not be any worse than the
currently existing one, and using the updated value might result in
a faster saturation of its cost but never an erroneous output.

Algorithm 14 APSP_Naive_FW
1: Input: 𝐸 ⊲ 𝐺 (𝑉 , 𝐸,𝑊) as adjacency matrix of size |𝑉 |x|𝑉 |
2: Initalise the non-edges in 𝐸 as∞
3: for all 𝑘 ∈ 𝑉 do
4: for all (𝑢, 𝑣) ∈ 𝑉 ×𝑉 in parallel do
5: 𝐸 [𝑢, 𝑣] =𝑚𝑖𝑛(𝐸 [𝑢, 𝑣], 𝐸 [𝑢, 𝑘] + 𝐸 [𝑘, 𝑣])

5.3 Third Approach: Blocked Floyd-Warshall
There are quite a few similarities between matrix multiplication and
Floyd-Warshall’s algorithm. Every element 𝐸 [𝑖, 𝑗] accesses elements
present in the row 𝑖 or column 𝑗 only, but here the access happens
one at a time over several iterations. It can be easily seen that
there will be repetitive access to the array elements. A little bit of
math will show us that each element is accessed 𝑂 (𝑉) times. In
algorithm 14, a lot of time is wasted in global memory transfer but
the computation done by each thread is fairly simple. Following the
common optimisation of matrix multiplication, we may adopt ways
to bring chunks of data to the shared memory so that the repetitive
access can happen from a much faster shared memory rather than
a DRAM.

Katz et. al. [15] discuss an implementation of Floyd Warshall’s
algorithm that uses shared memory and brings about a significant
speedup. Like the previous algorithm, it also uses the adjacency ma-
trix representation of the graph. We will be representing the array
elements as 𝐸 [𝑖, 𝑗], where 𝑖 and 𝑗 are the row and column indices.

FW performs the DP updates 𝑛 = |𝑉 | times on every element. We
represent the number of updates or the iterations performed as per
the original Floyd-Warshall as 𝑘 . So 𝑘 varies from 0 to 𝑛 − 1.

The 2D array is partitioned into blocks of equal size. At ev-
ery iteration, a block along the main diagonal (starting from the
topmost) is processed. These blocks are called primary blocks.
This means, for a graph with 𝑛 vertices, the algorithm performs

𝑛
𝐵𝐿𝑂𝐶𝐾𝑆 𝐼𝑍𝐸

iterations. This means that in every iteration, 𝑘 in-
creases by 𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸. Each iteration is further broken down
into three phases.

5.3.1 First Phase: Independent Phase. In the first phase, only
the values in the primary block are computed. This phase is called
the "independent" phase because the computations depend only
on the primary block. Only one block is launched and only one
SM is utilised making it very lightweight. Here, the entire primary
block is transferred to the shared memory of the SM. At every itera-
tion, the corner points of the primary block are (𝑝𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑠𝑡𝑎𝑟𝑡) and
(𝑝𝑒𝑛𝑑 , 𝑝𝑒𝑛𝑑), where 𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑝𝑟𝑖𝑚𝑎𝑟𝑦_𝑏𝑙𝑜𝑐𝑘_𝑖𝑑 × 𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸
and 𝑝𝑒𝑛𝑑 = 𝑝𝑠𝑡𝑎𝑟𝑡 + 𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸 − 1. This means that Floyd War-
shall is performed on array elements with 𝑖 and 𝑗 in the range
[𝑝𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑒𝑛𝑑]. Also 𝑘 runs from 𝑝𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑒𝑛𝑑 .

5.3.2 Second Phase: Partially dependent phase. In this phase,
all the blocks that are dependent on the primary block and itself are
computed. These are the blocks that share a row or column with the
primary block. The current block and the primary block is loaded in
the shared memory. Note that for every partially dependent block,
the primary block will be loaded in the memory, i.e. we have not
been able to do away with all the repetitions in memory access.
This phase is called "partially dependent" as each block depends on
one other block i.e. the primary block.

There are two types of blocks, ones which share the rows with
the primary block and the ones which share the columns. In this
phase, Floyd Warshall’s algorithm is performed for the elements
with 𝑖 and 𝑗 in the range [𝑝𝑠𝑡𝑎𝑟𝑡 → 𝑝𝑒𝑛𝑑 , 0 → 𝑛 − 1] for the row
aligned blocks and [0 → 𝑛 − 1, 𝑝𝑠𝑡𝑎𝑟𝑡 → 𝑝𝑒𝑛𝑑] for the column
aligned blocks. Note that these ranges also include the primary
block but the primary block is computed in the previous phase,
and not in this phase. As already discussed, FW is performed for
𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸 iterations with 𝑘 ranging from 𝑝𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑒𝑛𝑑 in this
phase.

5.3.3 Third phase: Double dependent phase. In the last phase,
all the other blocks are computed. These blocks are dependent on
the blocks computed in the second phase. This phase is called
"double dependent" phase. Here, three blocks need to be loaded in
the shared memory, the current block and the two dependent blocks
that were computed in the previous phase. Here all the elements
with their 𝑖 and 𝑗 indices not in [𝑝𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑒𝑛𝑑] are computed. Like
the previous phases, 𝑘 runs from 𝑝𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑒𝑛𝑑 .

So in all the three phases, the basic algorithm remains the same.
Each phase performs 𝐵𝐿𝑂𝐶𝐾_𝑆𝐼𝑍𝐸 iterations of FW. All that varies
is the blocks that are computed. Figure 2 shows the blocks computed
in the three stages.

Accelerating large graph algorithms on GPU using CUDA

Figure 2: Blocks processed in the three phases, for the first
and 𝑡𝑡ℎ iteration.

6 EXPERIMENTAL RESULTS
Now, to test the significant speedups brought about by the above
algorithms over the sequential ones, we run various experiments
over diverse graphs and analyse the results obtained.

6.1 Datasets
A proper test suite is required to capture the performance of every
algorithm presented above accurately. To that extent, a wide range
of graphs of varying sizes and densities from diverse fields such as
Genetics, Social Network Circles, Geometric Graphs, Cryptocur-
rencies, etc., along with a mix of randomly generated graphs were
taken and used in the testing of the algorithms. Suitable graphs
were first identified, processed to remove redundant data, and were
then converted into the required format. The graphs used are fur-
ther segregated into two classes. For the experiments carried, we
used two classes of graphs.

6.1.1 APSP Graphs. As we know that running APSP algorithms
for graphs of size over a few thousand vertices is not feasible, owing
to memory and time constraints, we restrict this class of graphs
to a size of less than ten thousand vertices to accommodate such
algorithms. The following five graphs are used in the testing of our
APSP parallel algorithms.

• Graph 1:- This is a randomly generated graph of 2, 700 ver-
tices and 1, 808, 853 edges using the Mersenne Twister pseu-
dorandom generator. The graph has an average degree of
1, 340 and is extremely dense.

• Graph 2:- This is a graph modelling the Facebook Friends
Circle taken from Stanford Network Analysis Project (SNAP)
[16, 17]. It has 4, 039 vertices and 88, 234 edges, with an
average degree of 44, making it amoderately sparse graph.

• Graph 3:- This graph represents the Biological Gene Net-
work taken from Network Repository [18, 19]. It has 4, 412

vertices and 108, 818 edges, making it amoderately sparse
graph with an average degree 49.

• Graph 4:- Modelled after the Bitcoin OTC Network[20]
taken from SNAP, this graph has 5, 881 vertices and 21, 492
edges, with the average degree amounting to 7. This is a
very sparse network.

• Graph 5:- This graph is a product of random generation us-
ing the Mersenne Twister pseudorandom number generator.
It has 7, 500 vertices and 837, 083 edges and with an average
degree of 233, it is a graph with an average density.

6.1.2 BFS and SSSP Graphs. Unlike APSP algorithms, BFS and
SSSP do not face any particular constraint. Even then, in this class
of graphs, we still do not go above than a few million vertices in
size owing to the fact that storage and handling of the data becomes
increasingly difficult after a certain point. We have five graphs in
this class as well.

• Graph 1:- Same as the Graph 1 in Section 6.1.1.
• Graph 2:- This is a graph modelling the Human Genetic
Network taken from Network Repository [21]. It has 21, 853
vertices and 12, 323, 648 edges. With an average degree of
1, 128, this is a reasonably dense graph.

• Graph 3:- This graph represents the Slashdot Social Circle
taken from SNAP [22]. It has 82, 168 vertices and 504, 230
edges, making it a very sparse graph of average degree 12.

• Graph 4:- Modelled after a network of Autonomous Sys-
tems in the internet [23] and taken from SNAP, this graph
has 1, 694, 616 vertices and 11, 094, 209 edges, with the aver-
age degree amounting to 13. This is an extremely sparse
network.

• Graph 5:- This is a Geometric Graph randomly generated be-
tween points of a unit square whose distance is greater than a
certain value. It has 16, 777, 214 vertices and 132, 557, 200with
an average degree of 16, making it an extremely sparse
graph as well.

6.2 Experiments
All the experiments were conducted on Colab Notebook, due to
lack of proper resources and to provide a uniform ground for test-
ing. The device specifications of the resource: 25GB RAM, Intel®
Xeon® CPU @ 2.00GHz Quadcore processor running on Python 3
Google Compute Engine backend (GPU) with one Tesla-P100. The
applications were tested on CUDA version 11.2 with Nvidia Driver
Version: 460.32. The CPU applications were implemented in C++
using standard template library. The source vertices for the BFS
and SSSP algorithms were chosen at random in such a way that
they lie in the largest connected component in the graph.

6.3 Results
The results for various algorithms run across the diverse test suite
are presented in Fig. 3, Fig. 4, Fig. 5, and Fig. 6 all of whose time of
execution has been capped at 4 minutes.

6.3.1 BFS. We implemented three variants of parellel BFS, each
having its pros and cons. As we can in the results, the simple
quadratic optimization of BFS, parallelBFS gives the best results in
all possible cases. The two other variants of linear implementation

HP3 Group 2

Figure 3: BFS times for various approaches

of BFS - scanBFS and queueBFS are suited for different types of
graphs. scanBFS performs well on sparse graphs and queueBFS
performs well on dense graphs. It is because of the fact queueBFS
launches threads for every node in queue, and in dense graphs it
helps in parallelism of the vertex frontiers update, whereas in sparse
graphs, this parallelism is lost due to the overhead of launching of
the kernel. It can be even worse than CPU implementation of BFS
in those cases. scanBFS involves the additional overhead of 4 global
synchronisation steps which becomes a bottleneck for dense graphs
and hence its performance stoops in comparison to queueBFS. We
believe that, as the size of the graph increases, this overhead of
global synchronisation ceases to be a bottleneck in the performance
of scanBFS and it can even outperform parallelBFS. We could not
benchmark those cases due to memory constraints.

6.3.2 SSSP. This algorithm is heavily dependent on the number of
edges present in the graph, and as the number of edges increases,
the running time increases as well in both CPU and GPU. This can
be attributed to the fact that when a particular node is examined,
every edge with that node as a endpoint is assumed to be a part of
a shortest path to some node and is thereby analysed to verify the
hypothesis. This trend can be observed in the Fig. 4 as well, where
Graph 3 has a lesser running time than Graph 2 in spite of having
higher number of vertices.

Another interesting fact is the speedup offered by the parallel al-
gorithm as compared to the sequential one. Let’s define the density
of the graph as the ratio between the average degree of the vertices
and the number of vertices in the graph. From the Fig. 4, it is obvi-
ous that lower the density, higher the speedup offered. For example,
with a little bit of math, we will find that the densities of Graph
1 and Graph 5 are approximately 0.5 and 7 × 10−6, respectively,
whereas the speedup of the parallel algorithms compared to the
sequential one is 3.9𝑥 for the former and 94.4𝑥 for the later. This is
because, with a higher density, the number of sequential instruc-
tions executed by the threads on average significantly increases,
resulting in the decreased speedup.

Now we will see why we get a decreased speedup with the
increase in coarsening factor for a particular graph (Fig. 5). Coars-
ening of the thread was carried out with the aim of increasing the
per thread activity assuming the thread is not fully utilising the
resources in the GPUs. But with each thread iterating through the
edges of its corresponding vertex, the per thread activity is already

Figure 4: SSSP times for various approaches

Figure 5: SSSP times for different coarsening factors

significant. Increasing it further will result in a drastic loss of paral-
lelism, which is even more prominent in dense graphs like Graph 1
and Graph 2 with a CF of 16, where the parallel version is signif-
icantly slower even when compared to the sequential algorithm
(Fig. 4).

6.3.3 APSP. Ignoring the Blocked Floyd-Warshall (BFW), the Floyd-
Warshall algorithm performs significantly worse than the APSP
using repeated SSSP for graphs, unless the graph is dense (Fig. 6,
Graph 1 and Graph 2). This is true even for their corresponding
sequential versions. This is because, asymptotically, using repeated
SSSP for APSP has a much lesser complexity than Floyd-Warshall
whenever the graph is sparse, as the algorithm depends cubically
on the number of vertices and ignores the number of edges.

But, in the BFW parallel algorithm, we can see a drastic increase
in the performance as compared to all other versions (Fig. 6). It
performs at least 500𝑥 times better than the best sequential run
time and reaches as much as 4000𝑥 in certain cases. Even when
compared to the best parallel algorithms run, it offers at least 20𝑥
speedups. This is because, BFW makes optimal use of memory
accesses unlike the naive FW algorithm.

7 CONCLUSION
In this paper we have presented fast parallel implementations for
few fundamental graph algorithms: breadth-first traversal, single
source shortest path, all pair shortest path, using GPUs and which
can provide incredible speedup compared to sequential programs.

Accelerating large graph algorithms on GPU using CUDA

Figure 6: APSP times for various algorithms

All the algorithms when parallelized on the GPU brought about
some speedup. Performing more optimizations lead to even more
speedups. For example, while implementing the naive Floyd War-
shall, the kernel showed only about a speedup of 6-7 times. Whereas
when using various memory optimizations, we got a huge speedup
in blocked Floyd Warshall, 500-4000 times, asymptotically better
than the sequential algorithm.

Some of the algorithms performed really well for small graphs
but were bottle necked for dense graphs. Moreover the resource
constraints proved to be a driving factor of the speedup or lack
thereof, for example, in case of coarsening in SSSP, we observed
a decrease in speedup with increasing coarsening factor. Using
CUDA, we can easily perform various optimizations which would
help us fully utilise the power of modern GPUs.

REFERENCES
[1] Jun-Dong Cho, Salil Raje, and Majid Sarrafzadeh, “Fast approximation algorithms

on maxcut, k-coloring, and k-color ordering for vlsi applications,” IEEE Trans.
Comput., vol. 47, no. 11, Nov. 1998.

[2] Thomas Lengauer and Robert Endre Tarjan, “A fast algorithm for finding domi-
nators in a flowgraph,” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, pp. 121–141,
Jan. 1979.

[3] P. Narayanan, “Single source shortest path problem on processor arrays,” [Pro-
ceedings 1992] The Fourth Symposium on the Frontiers of Massively Parallel Com-
putation, pp. 553–556, 1992.

[4] John Owens, Shubhabrata Sengupta, and Daniel Horn, “Assessment of graphic
processing units (gpus) for department of defense (dod) digital signal processing
(dsp) applications,” 10 2005.

[5] Paulius Micikevicius, “General parallel computation on commodity graphics
hardware: Case study with the all-pairs shortest paths problem.,” 01 2004, vol. 3,
pp. 1359–1365.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer.
Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[7] Michael L. Fredman and Robert Endre Tarjan, “Fibonacci heaps and their uses in
improved network optimization algorithms,” J. ACM, vol. 34, no. 3, pp. 596–615,
July 1987.

[8] Pawan Harish and P. J. Narayanan, “Accelerating large graph algorithms on the
gpu using cuda,” in High Performance Computing – HiPC 2007, Srinivas Aluru,
Manish Parashar, Ramamurthy Badrinath, and Viktor K. Prasanna, Eds., Berlin,
Heidelberg, 2007, pp. 197–208, Springer Berlin Heidelberg.

[9] Pedro J. Martín, Roberto Torres, and Antonio Gavilanes, “Cuda solutions for the
sssp problem,” in Proceedings of the 9th International Conference on Computational
Science: Part I, Berlin, Heidelberg, 2009, ICCS ’09, p. 904–913, Springer-Verlag.

[10] Alberto Magni, Christophe Dubach, and Michael F. P. O’Boyle, “A large-scale
cross-architecture evaluation of thread-coarsening,” in Proceedings of the Inter-
national Conference on High Performance Computing, Networking, Storage and
Analysis, New York, NY, USA, 2013, SC ’13, Association for ComputingMachinery.

[11] Nicolai Stawinoga and Tony Field, “Predictable thread coarsening,” ACM Trans.
Archit. Code Optim., vol. 15, no. 2, June 2018.

[12] Alberto Magni, Christophe Dubach, and Michael O’Boyle, “Exploiting gpu
hardware saturation for fast compiler optimization,” in Proceedings of Workshop

on General Purpose Processing Using GPUs, New York, NY, USA, 2014, GPGPU-7,
p. 99–106, Association for Computing Machinery.

[13] Alberto Magni, Christophe Dubach, and Michael O’Boyle, “Automatic optimiza-
tion of thread-coarsening for graphics processors,” in Proceedings of the 23rd
International Conference on Parallel Architectures and Compilation, New York, NY,
USA, 2014, PACT ’14, p. 455–466, Association for Computing Machinery.

[14] P. Z. Ingerman, “Algorithm 141: Path matrix,” Commun. ACM, vol. 5, no. 11, pp.
556, Nov. 1962.

[15] & Kider J.T Katz, G.J., “All-pairs shortest-paths for large graphs on the gpu,” in
Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics
Hardware (GH ’08), 47-55. 2008, Penn Libraries.

[16] Jure Leskovec and Andrej Krevl, “SNAP Datasets: Stanford large network dataset
collection,” http://snap.stanford.edu/data, June 2014.

[17] Julian J. McAuley and Jure Leskovec, “Discovering social circles in ego networks,”
CoRR, vol. abs/1210.8182, 2012.

[18] Ryan A. Rossi and Nesreen K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015.

[19] Ara Cho, Junha Shin, Sohyun Hwang, Chanyoung Kim, Hongseok Shim, Hyojin
Kim, Hanhae Kim, and Insuk Lee, “Wormnet v3: a network-assisted hypothesis-
generating server for caenorhabditis elegans,” Nucleic acids research, vol. 42, no.
W1, pp. W76–W82, 2014.

[20] Srijan Kumar, Bryan Hooi, Disha Makhija, Mohit Kumar, Christos Faloutsos, and
VS Subrahmanian, “Rev2: Fraudulent user prediction in rating platforms,” in
Proceedings of the Eleventh ACM International Conference on Web Search and Data
Mining. ACM, 2018, pp. 333–341.

[21] Mukesh Bansal, Vincenzo Belcastro, Alberto Ambesi-Impiombato, and Diego
Di Bernardo, “How to infer gene networks from expression profiles,” Molecular
systems biology, vol. 3, no. 1, 2007.

[22] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney,
“Community structure in large networks: Natural cluster sizes and the absence of
large well-defined clusters,” CoRR, vol. abs/0810.1355, 2008.

[23] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos, “Graphs over time: Den-
sification laws, shrinking diameters and possible explanations,” in Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, New York, NY, USA, 2005, KDD ’05, p. 177–187, Association for
Computing Machinery.

http://snap.stanford.edu/data

	Abstract
	1 Introduction
	2 CUDA Implementation
	2.1 Graph Representation in CUDA

	3 Breadth First Search
	3.1 First Approach: Parallel BFS
	3.2 Second Approach: Queue BFS
	3.3 Third Approach: Scan BFS

	4 Single-Source Shortest Path
	4.1 First Approach: Bugged Parallel Djikstra
	4.2 Second Approach: Corrected Version
	4.3 Thread Approach: Thread Coarsening

	5 All Pair Shortest Path
	5.1 First Approach: Using SSSP
	5.2 Second Approach: Naive Floyd-Warshall
	5.3 Third Approach: Blocked Floyd-Warshall

	6 Experimental Results
	6.1 Datasets
	6.2 Experiments
	6.3 Results

	7 Conclusion
	References

