Accelerating large
graph algorithms on
GPU using CUDA

@ ©@ © ©

Problem & Motivation

Breadth First Search

Single Source
Shortest Path

All Pair
Shortest Path

Table of Contents

01
Problem and
Motivation

Understanding the Problem

Graph algorithms are used to
develop intelligent solutions
and enhance various machine
learning models.

Fast implementations of
sequential graph algorithms are
fast, but the hardware used in
them is very expensive.

Understanding the Motivation

Nvidia CUDA provides a
development environment for
creating high performance
GPU-accelerated applications.

Previous works in parallel graph
algorithms achieved practical
times on basic graph operations
but at high hardware cost.

© ® CUDA Graph Representation

e Eachvalue of posV
contains an index of the

AFIE posk array .
e The pointer contains the
Pointers to .
number of edges number of neighbours of
Bl i, the node, say n.
1|5]o]2]2a]s 1o]a]1a]7]20 e The next nelements are

| | the ids of neighbouring
See DLV vertices.

Graphs used for Experiments

APSP Graphs
(Due to time and memory constraints restricted the size) *

© *Graphs are numbered in increasing number of vertices

Graph Number | # Nodes # Edges Average Degree

1 2,700 1,808,853 1,340

2 4,039 88,234 44 ©.

3 4412 108,818 49
®

4 5,881 21,492 7

® S) 7,500 837,083 233

Graphs used for Experiments

BFS and SSSP Graphs
(No constraints on the size) *

© *Graphs are numbered in increasing number of vertices

Graph Number | # Nodes # Edges Average Degree

1 2,700 1,808,853 1,340

2 21,853 12,323,648 1,128 © ..

3 82,168 504,230 12
]

4 1,694,616 11,094,209 13

® S) 16,777,214 132,557,200 16

BREADTH
FIRST
SEARCH

/@\@ Our Implementations @g
Parallel BFS
Queue BFS

First Approach: Parallel BFS

Level-synchronous approach Algorithm 1 paralle]BFS_Host

. 1: Input: Vi, E;. S > The graph G(V, E) and source S
A
Runs O(V"2+E) Operations 2- Create distance array Dist,, and parent array Py, of size |V|
. 3: Initialise all elements of Dist,, P, to co
Vertex frontiers : Nodes that . o
i Dg|S] =0
are currently being visited 5: level = 0
6 flag = True
Edge frontiers : Nodes that will 7 whl}f flas}z?dlo
. 8 aqg = False
be visited in the next iteration 9 Invoke parallelBFS_kernel(level, V. Ez,Disty, flag).
10- level = level +1

flag checks for termination

First Approach: Parallel BFS

Threads are launched for
each vertex

Each vertex checks ifitis
frontier vertex

If yes, it updates the
distances of neighbours and
populates the edge frontiers

Terminates when no frontier
vertex updates its neighbour

Algorithm 2 parallelBFS_kernel

—

- Input: level, Vg,Eg, Dist,, flag
tid = getThreadID
- f = False
- if tid < Vagyze and Dist,|tid] = level then
u = tid
for all v = neighbours of u do
if level +1 < Disty|v] then
Disty|v] = level + 1
f =True
if f = True then
flag = True

w o

e g - N

- e
— Q
' '

Second Approach: Queue BFS

Level-synchronous

Runs O(V + E) operations

Vertex frontier and edge
frontier is maintained in form
of a queue

Intuition is similar to
sequential BFS.

Terminates when there are
no vertex frontiers.

Algorithm 3 queueBFS_Host

1:

Input: V. E;. S > The graph G(V,E) and source S
Create cost array Dist, and parent array P, of size |V| and
initialise all values to co
Create two array ¢Q and nQ, and initialise it to S and null
respectively.
Distg[S] =0
Pa|S] = -1
[=0 e Start with the source vertex
while cQg:0 > 0 do

Invoke queueBFS(I, Vy, Eg, Distg, Py, ¢Q, nQ)

swap(cQ, nQ)

Set nQ to null

I=1+1

Second Approach: Queue BFS

Threads are launched for each ~ Algorithm 4 queueBFS_kernel

node in vertex frontier queue 1: Input: [, V,, Eg, Distg, P, ¢Q,nQ » The graph G(V, E) and
source S

2- tid = getThreadID
3- if tid < cQsjz¢ then

For all the neighbours of the
node, update the distance if

4 u=cQ|tid|
the node can be reached in 5= forall o = neighbours of u do
fewer steps 6: if Distz|v] = oo and atomicMin(Distg|v].1 + 1) = oo
then
Add that node in the edge : Palof=u.
frontier queue 8: pos = atomicAdd(nQgjze, 1)
9: nQ|pos| =v

Involves atomic operations

Third Approach:
Scan BFS

Host

Level-synchronous approach
Needs 4 global synchronization
Perform O(V + E) operations

Improves on parallelBFS by
populating vertex and edge
frontier queue in linear
operations

Terminates when there are no
vertex frontiers.

Algorithm 5 ScanBFS_Host

o

SR R S -

11:
12:
13:

14:
15:

16:
17:

- Input: Vg, Eg, S > The graph G(V, E) and source S
- Create updating cost array Deg,, PreDeg, of size |V| and ini-

tialise all values to 0
Create cost array Dist, of size |V| and initialise all values to co

- Create mask array P, of size |V| and initialise all values to —1

Create two array ¢Q and nQ, and initialise it to S and null
respectively.
Disty|S] =0
Po[S] = -1
=0 > Start with the source vertex
while cQg;e > 0 do

Invoke nextLayer(l, V,, Eg, Py, Distg, ¢Q)

Invoke countDegrees(Vy, Eg. P, ¢Q, Degy)

Invoke scanDegrees(cQsjze, Degq, PreDeg,)

Perform Prefix Sum on Deg,, and store the results in
PreDeg,

nQ = PreDegg|cQsize /NUM_THREADS]

Invoke populateNextQueue(V,, E;, Pg, cQ.nQ, Degq,
PreDegg)

cQ =nQ

I=1+1

D

@)

Third Approach: semmease

Scan BFS

3:

1
5
Threads are launched for each ‘7’
node in the vertex frontier 5

Input: I, Vg, Ea, Pa, Dista, ¢Q

2: tid = getThreadld() > Get the Id of the thread

if tid < cQgjz¢ then
u = cQ|tid|
for all v = neighbours of u do
if Disty|v] = [+ 1 then
Distgfo] =1+1

Palv] = u
1 . Al ithm 7 tDe
Uses Blelloch's prefix sum on g‘;" = CZ""P gge;
. 1: Input: V, E,. Py, ¢Q, Deg,

the nl:lmber of edge frontiers 2- tid = getThreadld() > Get the Id of the thread
contributed by a vertex. 3 if tid < ¢Qgjze then

a: u = cQ[tid]

: d=0

Fills up the the edge frontier :
using the computed prefix sum. ..
8
9

for all v = neighbours of u do
if P;|v]| = Eg.index(v)andv # u then
d=d+1
Degg|tid] =d

Algorithm 8 scanDegrees

Third Approach: o0, Dre T

2: tid = getThreadld() > Get the Id of the thread

. Sca n BFS 3: if tid < cQsize then @
cos 4 Create a shared array preSum of size NUM_THREADS

5 m = threadld.x
6 preSum|m] = Degg|tid]
7: sync_threads
8 n=2
- : hile n < NUM_THREADS do
Algorithm 9 populateNext A b
goxition. 3 poputateles Ducuc 10: if bitwiseAnd(m,n — 1) = 0 and tid + (2 * n) < cQsize
1: Input: Vg, Eg, Pa, cQ, nQ, Dega, PreDegq then
2: tid = getThreadId() > Get the Id of the thread ;. PreSum[m]-)— = preSum[tid + (2 * n)]
3 if tid < cQsiz, then 12: sync_threads
4: Initialise a shared variable i 13: =D
5 if threadld.x = 0 then 14: ifimi =0 thiexn
6 i = PreDega[NUM_THREADS] 15: PreDeg,[tid/[NUM_THREADS + 1] = preSum|[m]|
7: sync_threads 16: ~n=NUM_THREADS
8: s=0 17: while n > 1do
9: if threadld.x # 0 then 18: if bitwiseAnd(m,n — 1) = 0 and tid + (n/2) < cQsjze
10: s = Degg|[tid — 1] then
1 u = cQ|tid] 19: temp = preSum|m|
12: c=0 20: preSum|[m|+ = preSum(tid + (n/2)]
13: for all o = neighbours of u do 21: preSum|[tid + (n/2)] = temp
14: if P,|v]| = E,.index(v) and v # u then 2% sync_threads
15: nQli+s+c]=0 23: n=n/2

16: c=c+1 24: Degq|tid] = preSum[m]

0

E
£
£
o
E
B

Mercury Saturn Neptune Venus

Results and Analysis

1 —— GPU, quadratic opt

- GPU, queueBFS
- GPU, scanBFS
-—= CPU

graph3
input graphs

ga;'>h4

Various Observations:

- parallelBFS gives the best
results for all possible graphs

- queueBFS performs well on
dense graphs

- scanBFS performs well on
sparse graphs

Single
Source

Shortest
Path

® Our Approach

Bugged Parallel
Dijkstra Coarsening

Approach Approach Approach
1 2 3
? O
Corrected
? Version

@)

First Approach: Bugged Parallel Dijkstra

Algorithm proposed by Harish et. al.

Uses an updating cost array U, as
intermediate to update the actual
cost array C_. Prevents RAW and
WAR data hazards.

Operates in two sequential phases
over multiple iterations.

The boolean array M, and variable
flag determines the termination of
the algorithm.

Algorithm 10 SSSP_Host

1:
2:

>

11:
12:

® ® N

Input: V,, E;, Wg, S > The graph G(V,E, W) and source S
Create updating cost array U, of size |V| and initalise all values
to oo
Create cost array C, of size |V| and initalise all values to co
Create mask array M, of size |V| and initialise all values to
false
Ua[S] =0
Ca[S] =0
Mgy |[S] = flag = true > Start with the source vertex
while flag do
flag = false
for all v € V in parallel do
Invoke SSSP_Phasel(Vy, Eq, Wy, Ca, Ug, Mg)
Invoke SSSP_Phase2(C,, Ug, Mg, flag)

@)

First Approach: Bugged Parallel Dijkstra

In Phase 1, the vertices in M, are
treated as potential intermediaries
for a shortest path.

The distance to neighbours of such
vertices are updated (Line 5 - 7).

In Phase 2, C_ is updated using U,
and corresponding bit is set in M..

If no such update, the algorithm is
terminated through the flag
variable.

o
Algorithm 11 SSSP_Phasel
1: Input: Va, Ea, Wa, Ca, Ua, Ma
2. tid = getThreadlId() > Get the Id of the thread

3:

»

rs A

if Mg[tid| = true then
Mg |tid] = false

for all neighbours nid of tid do » Line 6, 7 must be atomic
if Uy |nid] > Cq|tid] + Wy |nid| then
Ug|nid] = Cq|tid] + Wy |nid]

Algorithm 12 SSSP_Phase2

L T s R v

. Input: Cq, Ug, Mg, flag

tid = getThreadId()

if Cy[tid] > Ug|tid] then
Mg(tid] = flag = true
Cqltid] = Ug|tid]

> Get the Id of the thread

Second Approach: Corrected Parallel Dijkstra

@) ©

e Above presented algorithm is

bugged, pointed out by Martin et. al. ~ Algorithm 11 SSSP_Phasel
) . 1: Input: Vg, Eq, Wa, Cg, Ug, Mg
e Using U, prevents RAW and WAR in ;5 setThreadId() Gl heTl oFihie thread
C, but does nothing for WAW 3. if My [tid] = true then
dependencies in U, (Line 6 and 7). Ma|tid] = false
for all neighbours nid of tid do » Line 6, 7 must be atomic
if Uy [nid] > Cq|tid] + W, |nid] then
Ug[nid] = Ca[tid) + Wy[nid]

»

e During simultaneous update of

@ U[nid] in Line 7. we need the

smallest value to be retained.

ric s A A

e Solve it indirectly, by executing Line
6 and 7 atomically.

Heavily dependent on number of
edges (Graph 2 vs Graph 3 & 4)

Speedup of GPU compared to CPU is
dependent on the density of graph.

Lower the density, higher the
speedup offered.

Density [G1(0.5) >>G5(109)],
SpeedUp [G1(4x) << G5(95x)]

@)

Third Approach: Thread Coarsening

Smaller number of more
Coarse-grained threads are
being executed

Instructions executed by a
number of different threads
are merged into a single
thread.

For finding the optimal thread
coarsening factor, we used
the manual approach of
merging.

Results and Analysis

e Aconsistent fall of performance
with increase in the thread
coarsening factor (c.f).

I
E
£
(V)
E

e Reason can be reductionin
parallelism with increasing c.f

e Another reason can the
subsequent increase in pressure
: . on the kernel.

coarsening factor

AII
Shortest ¢ ,_,, ----------------- ________ ’

Path @ .0
\C &

= -

First Approach: Using SSSP

Algorithm 13 APSP_Using_SSSP

f it SR

Works well on sparse
graphs.

Input: V. E,. W,
Create updating cost array U, of size |V|

Create cost array Cy of size |V|

Create mask array M, of size |V| and initialise all values to

false

= The graph G(V,E, W)

5: Create a 2d output array O, of size |V| x |V

7:
8:
9,

Serial time complexity: 10
0(VZlog V +EV)

12:
13:
14:

15:

> forall S € Vdo

Assign co to all values of Uy and Ca
Ua[S] =CqlS] =0
M,(S) = flag = true
while flag do
flag = false
for all v € V in parallel do
Invoke SSSP_Phasel(V,, E,, Wy, Cy. Uy, My)
Invoke SSSP_Phase2(C,, Uy, My, flag)
Copy the distances in C,, to O, [S]

» Start with the source vertex

Second Approach: Floyd Warshall

all intermediate vertices in {1,2,..., k — 1} all intermediate vertices in {1,2, ..., k—1}

/'_’——"/R/——’/R

P 0 P> 0
0,
w”_____’_/

p: all intermediate vertices in {1,2, ..., k}

40 _ { W ifk =0,
ij

min (4 V. dy " +d5TV) ifk>1.

Second Approach: Floyd Warshall

Algorithm 14 APSP_Naive FW

i Input: E = G(V,E, W) as adjacency matrix of size |V|x|V|

2- Initalise the non-edges in E as co

Vliterations —> 3 forallk €V do
/ for all (1,0) € V x V in parallel do
One thread per 5: E|u,v) = min(E|u,v], E[u, k] + E[k, ©])
element

e Uses the adjacency matrix representation rather than the adjacency list
representation discussed earlier.

e 0(VI?)threads and O(|V|) iterations.

@ Third Approach: Blocked Floyd Warshall

1
1 2 4 3}

3

© ;

5

Solution: Use Tiling

é) Third Approach: Using Blocked Floyd Warshall

-
First Phase

Diagonal Blocks

Double

: Second Phase

Dependent

—— Phase ol

Blocks row and column
aligned to diagonal

Third Phase
All other blocks

é} Third Approach: Using Blocked Floyd Warshall o

Phases when block (1,1) is the self-dependent block

é) Third Approach: Using Blocked Floyd Warshall

Independent Phase

-

K=1to4

©

é) Third Approach: Using Blocked Floyd Warshall

Partially dependent Phase

-

K=1to4

@

é) Third Approach: Using Blocked Floyd Warshall

Double dependent Phase

K=1to4

©

time {in ms)

— GPU, using sssp

~ GPU, using naive FW
—— GPU, using blocked FW

=== CPU, using sssp
=== CPU, using FW

ga;‘)hZ

gath
input graphs

ga;')h4

gabhs

e Naive GPU FW performs better
than using SSSP for dense graphs.

e Blocked FW has a massive
improvement in performance.

e FW does not depend on sparsity
of the graph.

