Accelerating large graph algorithms on GPU using CUDA

Archisman Pathak Kousshik Raj Koustav Chowdhury Rounak Patra

Satyam Porwal Siddhant Agarwal Sriyash Poddar

Problem & Motivation

Table of Contents

Breadth First Search

Single Source Shortest Path

All Pair Shortest Path

U1 Problem and Motivation

Understanding the Problem

. . .

Graph Algorithms

Graph algorithms are used to develop intelligent solutions and enhance various machine learning models.

. . .

Impractical Sequential Algorithms

Fast implementations of sequential graph algorithms are fast, but the hardware used in them is very expensive.

Understanding the Motivation

. . .

CUDA

Nvidia CUDA provides a development environment for creating high performance GPU-accelerated applications.

. . .

Previous Works in Parallel Graph Algorithms

Previous works in parallel graph algorithms achieved practical times on basic graph operations but at high hardware cost.

CUDA Graph Representation

. . .

- Each value of posV contains an index of the posE array
- The pointer contains the number of neighbours of the node, say *n*.
- The next *n* elements are the ids of neighbouring vertices.

Graphs used for Experiments

APSP Graphs (Due to time and memory constraints restricted the size) *Graphs are numbered in increasing number of vertices

Graph Number	# Nodes	# Edges	Average Degree
1	2,700	1,808,853	1,340
2	4,039	88,234	44
3	4412	108,818	49
4	5,881	21,492	7
5	7,500	837,083	233

Graphs used for Experiments

BFS and SSSP Graphs (No constraints on the size) *Graphs are numbered in increasing number of vertices

Graph Number	# Nodes	# Edges	Average Degree
1	2,700	1,808,853	1,340
2	21,853	12,323,648	1,128
3	82,168	504,230	12
4	1,694,616	11,094,209	13
5	16,777,214	132,557,200	16

BREADTH FIRST SEARCH

Our Implementations

First Approach: Parallel BFS

. . .

Host

- Level-synchronous approach
- Runs O(V^2 + E) operations
- Vertex frontiers : Nodes that are currently being visited
- *Edge frontiers* : Nodes that will be visited in the next iteration

. . .

- flag checks for termination

Algorithm 1 parallelBFS_Host

- 1: Input: V_a, E_a, S > The graph G(V, E) and source S
- 2: Create distance array $Dist_a$, and parent array P_a of size |V|
- 3: Initialise all elements of $Dist_a$, P_a to ∞
- 4: $D_a[S] = 0$
- 5: *level* = 0
- 6: flag = True
- 7: while flag do
- 8: flag = False
- Invoke parallelBFS_kernel(level, Va,Ea,Dista,flag).

. . .

10: level = level + 1

First Approach: Parallel BFS

Kernel

- Threads are launched for each vertex
- Each vertex checks if it is frontier vertex
- If yes, it updates the distances of neighbours and populates the edge frontiers
- Terminates when no frontier vertex updates its neighbour

. . .

Algorithm 2 parallelBFS_kernel 1: Input: level, Va, Ea, Dista, flag 2: tid = getThreadID 3: f = False4: if tid < Vasize and Dista[tid] = level then u = tid50 for all v = neighbours of u do 60 if level $+ 1 < Dist_a[v]$ then 7: $Dist_a[v] = level + 1$ 8: f = True9: if f = True then 10: flag = True11:

Second Approach: Queue BFS

Host

- Level-synchronous
- Runs O(V + E) operations
- Vertex frontier and edge frontier is maintained in form of a queue
- Intuition is similar to sequential BFS.
 - Terminates when there are no vertex frontiers.

. . .

Algorithm 3 queueBFS_Host

- Create cost array *Dist_a* and parent array *P_a* of size |V| and initialise all values to ∞
- 3: Create two array cQ and nQ, and initialise it to S and null respectively.

. . .

- 4: $Dist_a[S] = 0$
- 5: $P_a[S] = -1$
- 6: *l* = 0

Start with the source vertex

- 7: while cQsize > 0 do
- Invoke queueBFS(l, Va, Ea, Dista, Pa, cQ, nQ)
- 9: swap(cQ, nQ)
- 10: Set nQ to null
- 11: l = l + 1

Second Approach: Queue BFS

. . .

Kernel

- Threads are launched for each node in *vertex frontier queue*
- For all the neighbours of the node, update the distance if the node can be reached in fewer steps
- Add that node in the edge frontier queue
- Involves atomic operations

. . .

Alg	orithm 4 queueBFS_kernel
1:	Input: $l, V_a, E_a, Dist_a, P_a, cQ, nQ $ > The graph $G(V, E)$ and source S
2:	tid = getThreadID
3:	if $tid < cQ_{size}$ then
4:	u = cQ[tid]
5:	for all $v =$ neighbours of u do
6:	if $Dist_a[v] = \infty$ and $atomicMin(Dist_a[v], l+1) = \infty$
	then
7:	$P_a[v] = u$
8:	$pos = atomicAdd(nQ_{size}, 1)$
9:	nQ[pos] = v

Third Approach: Scan BFS

Host

- Level-synchronous approach
- Needs 4 global synchronization
- Perform O(V + E) operations
- Improves on *parallelBFS* by populating vertex and edge frontier queue in linear operations
- Terminates when there are no vertex frontiers.

. . .

Algorithm 5 ScanBFS_Host

- 1: Input: V_a, E_a, S \triangleright The graph G(V, E) and source S
- Create updating cost array Deg_a, PreDeg_a of size |V| and initialise all values to 0
- 3: Create cost array Dist_a of size |V| and initialise all values to ∞
- 4: Create mask array P_a of size |V| and initialise all values to -1
- 5: Create two array cQ and nQ, and initialise it to S and null respectively.
- 6: $Dist_a[S] = 0$
- 7: $P_a[S] = -1$
- 8: l = 0

Start with the source vertex

- 9: while $cQ_{size} > 0$ do
- 10: Invoke nextLayer($l, V_a, E_a, P_a, Dist_a, cQ$)
- 11: Invoke countDegrees(Va, Ea, Pa, cQ, Dega)
- 12: Invoke scanDegrees(cQsize, Dega, PreDega)
- 13: Perform Prefix Sum on Deg_a, and store the results in PreDeg_a
- 14: $nQ = PreDeg_a[cQ_{size}/NUM_THREADS]$
- 15: Invoke populateNextQueue(V_a , E_a , P_a , cQ,nQ, Deg_a , $PreDeg_a$)
- 16: cQ = nQ17: l = l + 1

Third Approach: Scan BFS

Kernels

- Threads are launched for each node in the vertex frontier
- Uses Blelloch's prefix sum on the number of edge frontiers contributed by a vertex.
- Fills up the the edge frontier using the computed prefix sum.

. . .

Algorithm 6 nextLayer

```
1: Input: l, V_a, E_a, P_a, Dist_a, cQ

2: tid = getThreadId() > Get the Id of the thread

3: if tid < cQ_{size} then

4: u = cQ[tid]

5: for all v = neighbours of u do

6: if Dist_a[v] > l + 1 then

7: Dist_a[v] = l + 1

8: P_a[v] = u
```

Algorithm 7 countDegrees

1: Input: Va, Ea, Pa, cQ, Dega Get the Id of the thread 2: tid = getThreadId() 3: if tid < cQsize then u = cO[tid]40 d = 05: for all v = neighbours of u do 6: if $P_a[v] = E_a$.index(v)andv $\neq u$ then 7: d = d + 18: $Deg_a[tid] = d$ 9:

Thind Annabash	Algorithm 8 scanDegrees			
Inira Approach:	1: Input: cQ_{size} , Deg_a , $PreDeg_a$ 2: tid = getThreadId() \sim Cet the Id of the thread			
Scan BFS	 3: if tid < cQ_{size} then 4: Create a shared array preSum of size NUM_THREADS 			
Kernels	5: $m = threadId.x$ 6: $preSum[m] = Deg_a[tid]$ 7: $sync_threads$ 8: $n = 2$			
Algorithm 9 populateNextQueue	9: while $n \le NUM_THREADS$ do if hitspiceAnd(m n = 1) = 0 and tid + (2 + n) < cO			
1: Input: V _a , E _a , P _a , cQ, nQ, Deg _a , PreDeg _a	10: If $bitwiseAna(m, n-1) = 0$ and $tia + (2 * n) < cQ_{size}$ then			
2: $tid = getThreadId()$ \triangleright Get the Id of the thread	11: $preSum[m] + = preSum[tid + (2 * n)]$			
3: if $tid < cQ_{size}$ then	12: sync_threads			
4: Initialise a shared variable <i>i</i>	13: $n = 2 * n$			
5: if $threadId.x = 0$ then	14: if $m = 0$ then			
$i = PreDeg_a[NUM_THREADS]$	15: $PreDeg_a[tid/NUM_THREADS + 1] = preSum[m]$			
7: sync_threads	16: $n = NUM_THREADS$			
8: $s = 0$	17: while $n > 1$ do			
9: if threadId. $x \neq 0$ then	18: if $bitwiseAnd(m, n - 1) = 0$ and $tid + (n/2) < cQ_{size}$			
10: $s = Deg_a[tid - 1]$	then			
11: $u = cQ[tid]$	19: temp = preSum[m]			
12: $c = 0$	20: $preSum[m] + = preSum[tid + (n/2)]$			
13: for all v = neighbours of u do	21: $preSum[tid + (n/2)] = temp$			
14: if $P_a[v] = E_a$.index(v) and $v \neq u$ then	22: sync_threads			
15: $nQ[i+s+c] = v$	23: $n = n/2$			
16: $c = c + 1$	24: $Deg_a[tid] = preSum[m]$			

Results and Analysis

Various Observations:

- parallelBFS gives the best results for all possible graphs
- queueBFS performs well on dense graphs
- scanBFS performs well on sparse graphs

Single Source Shortest Path

First Approach: Bugged Parallel Dijkstra

- Algorithm proposed by Harish et. al.
- Uses an updating cost array U_a as intermediate to update the actual cost array C_a. Prevents RAW and WAR data hazards.
- Operates in two sequential phases over multiple iterations.
- The boolean array M_a and variable flag determines the termination of the algorithm.

. . .

Algorithm 10 SSSP_Host

- 1: **Input**: $V_a, E_a, W_a, S \rightarrow$ The graph G(V, E, W) and source S
- 2: Create updating cost array U_a of size |V| and initialise all values to ∞
- 3: Create cost array C_a of size |V| and initialise all values to ∞
- 4: Create mask array M_a of size |V| and initialise all values to *false*

$$U_a[S] = 0$$

10:

11:

12:

$$: C_a[S] = 0$$

7:
$$M_a[S] = flag = true$$

Start with the source vertex

- 8: while flag do
 9: flag = false
 - for all $v \in V$ in parallel do

Invoke SSSP_Phase1(V_a , E_a , W_a , C_a , U_a , M_a)

. . .

Invoke SSSP_Phase2(C_a , U_a , M_a , flag)

First Approach: Bugged Parallel Dijkstra

- In Phase 1, the vertices in M_a are treated as potential intermediaries for a shortest path.
- The distance to neighbours of such vertices are updated (Line 5 7).
- In Phase 2, **C**_a is updated using **U**_a, and corresponding bit is set in **M**_a.
- If no such update, the algorithm is terminated through the **flag** variable.

. . .

Algorithm 11 SSSP_Phase1

1: Input: $V_a, E_a, W_a, C_a, U_a, M_a$ 2: tid = getThreadId() > Get the Id of the thread 3: if $M_a[tid] = true$ then 4: $M_a[tid] = false$ 5: for all neighbours *nid* of *tid* do > Line 6, 7 must be atomic 6: if $U_a[nid] > C_a[tid] + W_a[nid]$ then 7: $U_a[nid] = C_a[tid] + W_a[nid]$

Algorithm 12 SSSP_Phase2

1: Input: $C_a, U_a, M_a, flag$ 2: tid = getThreadId() > Get the Id of the thread 3: if $C_a[tid] > U_a[tid]$ then 4: $M_a[tid] = flag = true$ 5: $C_a[tid] = U_a[tid]$

Second Approach: Corrected Parallel Dijkstra

. . .

6:

7:

- Above presented algorithm is bugged, pointed out by Martin et. al.
- Using U_a prevents RAW and WAR in C_a, but does nothing for WAW dependencies in U_a (Line 6 and 7).
- During simultaneous update of U_a[nid] in Line 7, we need the smallest value to be retained.
- Solve it indirectly, by executing Line 6 and 7 **atomically.**

. . .

Algorithm 11 SSSP_Phase1

- 1: Input: $V_a, E_a, W_a, C_a, U_a, M_a$
- 2: *tid* = getThreadId()

```
▶ Get the Id of the thread
```

3: **if** $M_a[tid] = true$ **then**

4:
$$M_a[tid] = false$$

5: **for all** neighbours *nid* of *tid* **do** > Line 6, 7 must be atomic

. . .

if $U_a[nid] > C_a[tid] + W_a[nid]$ then $U_a[nid] = C_a[tid] + W_a[nid]$

Results and Analysis

Observations

- Heavily dependent on number of edges (Graph 2 vs Graph 3 & 4)
- Speedup of GPU compared to CPU is dependent on the **density of graph**.
- Lower the density, higher the speedup offered.
- Density [G1(0.5) >> G5(10⁻⁶)],
 SpeedUp[G1(4x) << G5(95x)]

Third Approach: Thread Coarsening

- Smaller number of more Coarse-grained threads are being executed
- Instructions executed by a number of different threads are merged into a single thread.
 - For finding the optimal thread coarsening factor, we used the manual approach of merging.

Results and Analysis

Various Observations:

- A consistent fall of performance with increase in the thread coarsening factor (**c.f**).
- Reason can be reduction in parallelism with increasing **c.f**
- Another reason can the subsequent increase in pressure on the kernel.

First Approach: Using SSSP

. . .

What if we call SSSP on all Algorithm 13 APSP_Using_SSSP the vertices? The graph G(V, E, W) 1: Input: Va, Ea, Wa 2: Create updating cost array U_a of size |V|3: Create cost array C_a of size |V|Works well on sparse 4: Create mask array M_a of size |V| and initialise all values to graphs. false 5: Create a 2d output array Oa of size |V| x |V| for all $S \in V$ do Assign ∞ to all values of U_a and C_a 7: $U_a[S] = C_a[S] = 0$ 8- $M_a[S] = flag = true$ Start with the source vertex 9: Serial time complexity: while flag do 10: $O(V^2 \log V + EV)$ flag = false11: for all $v \in V$ in parallel do 12-Invoke SSSP_Phase1(Va, Ea, Wa, Ca, Ua, Ma) 13: Invoke SSSP_Phase2(Ca, Ua, Ma, flag) 14 Copy the distances in C_a to $O_a[S]$ 15:

. . .

• Uses the adjacency matrix representation rather than the adjacency list representation discussed earlier.

. . .

• $O(|V|^2)$ threads and O(|V|) iterations.

A deeper look into FW

. . .

		1		
1	2		4	5
		3		
		4		
		5		

Solution: Use Tiling

Phases when block (1,1) is the self-dependent block

Phases when block (t,t) is the self-dependent block

Independent Phase

K = 1 to 4

Partially dependent Phase

$$K = 1 \text{ to } 4$$

Double dependent Phase

K = 1 to 4

Results and Analysis

Various Observations:

- Naive GPU FW performs better than using SSSP for dense graphs.
- Blocked FW has a massive improvement in performance.
- FW does not depend on sparsity of the graph.

