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Understanding the Problem

Impractical Sequential 
Algorithms

Graph Algorithms

Graph algorithms are used to 
develop intelligent solutions 

and enhance various machine 
learning models.

Fast implementations of 
sequential graph algorithms are 
fast, but the hardware used in 

them is very expensive.



Understanding the Motivation

Previous Works in Parallel 
Graph Algorithms

CUDA

Nvidia CUDA provides a 
development environment for 

creating high performance 
GPU-accelerated applications.

Previous works in parallel graph 
algorithms achieved practical 

times on basic graph operations 
but at high hardware cost.



● Each value of posV 
contains an index of the 
posE array

● The pointer contains the 
number of neighbours of 
the node, say n.

● The next n elements are 
the ids of neighbouring 
vertices.

CUDA Graph Representation



APSP Graphs
(Due to time and memory constraints restricted the size)
*Graphs are numbered in increasing number of vertices

Graphs used for Experiments

Graph Number # Nodes # Edges Average Degree

1 2,700 1,808,853 1,340

2 4,039 88,234 44

3 4412 108,818 49

4 5,881 21,492 7

5 7,500 837,083 233



BFS and SSSP Graphs
(No constraints on the size)

*Graphs are numbered in increasing number of vertices

Graphs used for Experiments

Graph Number # Nodes # Edges Average Degree

1 2,700 1,808,853 1,340

2 21,853 12,323,648 1,128

3 82,168 504,230 12

4 1,694,616 11,094,209 13

5 16,777,214 132,557,200 16





Our Implementations

Parallel BFS

Queue BFS

Scan BFS



 First Approach: Parallel BFS
Host

- Level-synchronous approach

- Runs  O(V^2 +E ) operations

- Vertex frontiers : Nodes that 
are currently being visited 

- Edge frontiers : Nodes that will 
be visited in the next iteration

- flag checks for termination



 First Approach: Parallel BFS
Kernel

- Threads are launched for 
each vertex

- Each vertex checks if it is 
frontier vertex

- If yes, it updates the 
distances of neighbours and 
populates the edge frontiers

- Terminates when no frontier 
vertex updates its neighbour



 Second Approach: Queue BFS

- Level-synchronous

- Runs O(V + E) operations

- Vertex frontier and edge 
frontier is maintained in form 
of a queue

- Intuition is similar to 
sequential BFS.

- Terminates when there are 
no vertex frontiers. 

Host



 Second Approach: Queue BFS
Kernel

- Threads are launched for each 
node in vertex frontier queue

- For all the neighbours of the 
node, update the distance if 
the node can be reached in 
fewer steps

- Add that node in the edge 
frontier queue

- Involves atomic operations



 Third Approach: 
Scan BFS

Host

- Level-synchronous approach

- Needs 4 global synchronization

- Perform O(V + E) operations 

- Improves on parallelBFS by 
populating vertex and edge 
frontier queue in linear 
operations

- Terminates when there are no 
vertex frontiers.



 Third Approach: 
Scan BFS

Kernels

- Threads are launched for each 
node in the vertex frontier 

- Uses Blelloch’s prefix sum on 
the number of edge frontiers 
contributed by a vertex.

- Fills up the the edge frontier 
using the computed prefix sum. 



 Third Approach: 
Scan BFS

Kernels



Results and Analysis

Various Observations:

- parallelBFS gives the best 
results for all possible graphs

- queueBFS performs well on 
dense graphs

- scanBFS performs well on 
sparse graphs
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Our Approach
 Bugged Parallel 

Dijkstra

Corrected 
Version

Coarsening



 First Approach:  Bugged Parallel Dijkstra

● Algorithm proposed by Harish et. al.

● Uses an updating cost array Ua as 
intermediate to update the actual 
cost array Ca. Prevents RAW and 
WAR data hazards.

● Operates in two sequential phases 
over multiple iterations.

● The boolean array Ma and variable 
flag determines the termination of 
the algorithm.



 First Approach:  Bugged Parallel Dijkstra

● In Phase 1, the vertices in Ma are 
treated as potential intermediaries 
for a shortest path.

● The distance to neighbours of such 
vertices are updated (Line 5 - 7).

● In Phase 2, Ca is updated using Ua, 
and corresponding bit is set in Ma.

● If no such update, the algorithm is 
terminated through the flag 
variable.



 Second Approach: Corrected Parallel Dijkstra

● Above presented algorithm is 
bugged, pointed out by Martin et. al.

● Using Ua prevents RAW and WAR in 
Ca, but does nothing for WAW 
dependencies in Ua (Line 6 and 7).

● During simultaneous update of 
Ua[nid] in Line 7, we need the 
smallest value to be retained.

● Solve it indirectly, by executing Line 
6 and 7 atomically.



Results and Analysis
Observations

● Heavily dependent on number of 
edges (Graph 2 vs Graph 3 & 4)

● Speedup of GPU compared to CPU is 
dependent on the density of graph.

● Lower the density, higher the 
speedup offered.

● Density    [G1 (0.5)  >> G5 (10-6)], 
SpeedUp [G1 (4x) << G5 (95x)] 



● Smaller number of more 
Coarse-grained threads are 
being executed

● Instructions executed by a 
number of different threads 
are merged into a single 
thread. 

● For finding the optimal thread 
coarsening factor, we used 
the manual approach of 
merging.

 Third Approach: Thread Coarsening



Results and Analysis

Various Observations:

● A consistent fall of performance 
with increase in the thread 
coarsening factor ( c.f ).

● Reason can be reduction in 
parallelism with increasing c.f 

● Another reason can the 
subsequent increase in pressure 
on the kernel.
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 First Approach: Using SSSP

What if we call SSSP on all 
the vertices?

● Works well on sparse 
graphs.

● Serial time complexity: 
O(V2 log V + EV)



 Second Approach: Floyd Warshall

Floyd Warshall in Brief



 Second Approach: Floyd Warshall

Implementing FW in GPU

|V| iterations

One thread per 
element

● Uses the adjacency matrix representation rather than the adjacency list 
representation discussed earlier. 

● O(|V|2 ) threads and O(|V|) iterations.



 Third Approach: Blocked Floyd Warshall

A deeper look into FW 

1

1 2 4 5

3

4

5

Solution: Use Tiling



First Phase

Diagonal Blocks 

Second Phase
Blocks row and column 
aligned to diagonal

Third Phase

All other blocks

Independent 
Phase

Partially 
Dependent Phase

Double 
Dependent 
Phase

 Third Approach: Using Blocked Floyd Warshall



 Third Approach: Using Blocked Floyd Warshall



 Third Approach: Using Blocked Floyd Warshall
Independent Phase

K = 1 to 4



 Third Approach: Using Blocked Floyd Warshall
Partially dependent Phase

K = 1 to 4



 Third Approach: Using Blocked Floyd Warshall
Double dependent Phase

K = 1 to 4



Results and Analysis

   Various Observations:

● Naive GPU FW performs better 
than using SSSP for dense graphs.

● Blocked FW has a massive 
improvement in performance.

● FW does not depend on sparsity 
of the graph.



Thanks!


