
Just A Rather Very Intelligent Chatbot

Contents

Overview

Target audience

Project Timeline

SDLC

Why J.A.R.V.I.C.? 4 people, really?

Use Case diagram

Environments

Front-End

Connection Setup & Authentication

Examples

Chat Session

Examples

Back-End

Seq2Seq Model

Encoder & Decoder

Why Seq2Seq?

Emotion Classification

Model Integration

MySQL

Challenges Overcome

References

Demonstration

Previous Chat History

Emergency

Why J.A.R.V.I.C. ? 4 people, really ?

J.A.R.V.I.C. is a step towards creating an Automated

Conversational Agent that imparts Cognitive Behavior

Therapy. Studies show that individuals show more

freedom while share personal information with a chatbot

rather than with a human.

J.A.R.V.I.C. is an effort to show the effectiveness

of chatbots to act as therapists to offer low-cost

treatment to people who suffer from depression

and other mental diseases.

Overview

We have developed an automated conversational agent that

classifies the emotion of the user and forms replies based on the

predicted emotional state of the user. The product is an android

based application. It connects to a remote server that runs the

models for emotion classification and reply-text generation. The

app allows the user to signup and login into the system. His

details are stored in a database in the server. On login, the past

chat history is loaded into the chat session and the colours on the

GUI are modelled on the emotion of the user. The user also has

the options to reset password clear chat.

Target audience
Depression is the leading cause of disability worldwide, and

it can kill you. Yet scientists know surprisingly little about

why it happens and how best to treat it.

We do know that talking seems to help - especially under

the guidance of a licensed mental health professional. But

therapy is expensive, inconvenient, and often hard to

approach.

J.A.R.V.I.C. is aimed to be used by the poor masses who

cannot afford mental healthcare and is presented as an

alternative to the conventional human therapist.

J.A.R.V.I.C. can also be used by organizations like the

government to find out the general sentiments of the

community.

Use Case diagram:

Software Development Life Cycle Model Used: Rapid
Application Development

Development:

Build the system.

Design:

Work with user to design
J.A.R.V.I.C.

1

2

RAS and FS:
Identify objectives and
information requirement

Introducing J.A.R.V.I.C.

Use input from users

User feedback

Project timeline

1st Feb- 15th Feb

RAS and FS

Prepared the System
Requirement
Specification
Document and did
extensive feasibility
study

16th Feb- 2nd March

System Design Organising
solutions

Prepared an initial
design for the
system.

2nd March- 15th March

All the possible
solutions to the
problem are
carefully studied

15th March - 25th March

Development of
prototypes and
reviewing

Prototypes were
developed and the
best suitable
solution was
selected and the SRS
was reviewed

25th March-31st March

Development of
final product

The final product is
developed based on
the final prototype.

1st April-10th April

Testing

Use cases are tested
and corrections are
made if necessary.

Languages Used:

● Python 3.5
● Java 1.8
● XML Machine Learning:

● Cuda 9.0
● CuDNN 7.4
● Pytorch 1.0
● Scikit-learn
● Numpy
● Pickle

Environments Used:

Database Management
● MySQL
● mysql-connector for

Python3.5

App Development:
● Android Studio

Group subdivision-1: Deepank Agrawal & Jyotisman Das

Front-end development

● Development of Android Application

● Features:
○ Connection Setup:

■ Server Host
■ Server Port

○ Authentication:
■ Login

■ Signup
■ Reset Password

○ Chat Session:
■ Clear Chat
■ History
■ Colour of GUI based on emotion

71.8%

28.2%

Java

XML

Connection Setup & Authentication

● Connection Setup page.
○ Connection is based on Local Network instead of the web.
○ Tackles multiple WiFi hosts problems.

● Login/signup after authentication
○ After successful login, the chat history is restored and made available to the user.
○ Failed attempt to login is detected and the user is provided with the option to reset the password.
○ After verification the password is reset and the user is redirected to the login page.
○ For a new user, there is an option to signup after which the user can login using the credentials

he/she provided.

Examples

Chat Session

● This is the most important part of our ChatBot.

● The user chats with the J.A.R.V.I.C. server here.

● Many features are provided from the front-end side, like -
○ Clear Chat option - The user can anytime clear chat done with the server by selecting the option

from overflow menu.
○ Logout option - The user can log out from the chat, which get redirected to connection setup

window for re-login.
○ Dynamic GUI color - As the chat progresses, JARVIC tries to know the current emotional state of

the user and accordingly change GUI color.
○ Currently, JARVIC is able to identify 3 types of emotions namely - Positive, negative and critical.

Examples

CALM POSITIVE CRITICAL NEGATIVE

Group subdivision-2: Rajat Kumar Jenamani & Siddhant Agarwal

Back-end Development
● Chatbot text generative model for reply generation.

○ Trained two models one for each emotion- happy and sad.
○ Datasets are custom created.
○ A model is selected based on the classified emotion.

● Bayesian Classifier for emotion classification.
○ Classifies the emotions assuming the data distribution as multinomial.
○ This emotion is saved in the database.
○ The predicted emotion is used to format the interface as well as to select

model for generating replies.

● Database management for storing information about users.

Python

99.1%

/home/jeet/Downloads/rkj.jpg

MySQL

0.9%

Chatbot text generative models:
Seq2Seq model
The brain of our chatbot is a sequence-to-sequence (seq2seq) model. The goal of a seq2seq model is to
take a variable-length sequence as an input, and return a variable-length sequence as an output using a
fixed-sized model.
Two separate Recurrent Neural Networks are used for this purpose. One RNN acts as an encoder, which
encodes a variable length input sequence to a fixed-length context vector. In theory, this context vector
(the final hidden layer of the RNN) will contain semantic information about the query sentence that is input
to the bot. The second RNN is a decoder, which takes an input word and the context vector, and returns
a guess for the next word in the sequence and a hidden state to use in the next iteration.

Encoder
The encoder RNN iterates through the input sentence one token (e.g. word) at a
time, at each time step outputting an “output” vector and a “hidden state” vector.
The hidden state vector is then passed to the next time step, while the output
vector is recorded. The encoder transforms the context it saw at each point in the
sequence into a set of points in a high-dimensional space, which the decoder will
use to generate a meaningful output for the given task.

Decoder

The decoder RNN generates the response sentence in a token-by-token fashion.
It uses the encoder’s context vectors, and internal hidden states to generate the
next word in the sequence. It continues generating words until it outputs an
EOS_token, representing the end of the sentence

Why Seq2Seq?
All generative models like GANs, seq2seq, conditional variational autoencoders etc
use two different modules generally called encoders and decoders. As the name
suggests, Encoders encode a given input into feature vectors. The decoder takes
in the encoder outputs and states and predicts the output iteratively.

Seq2Seq models use the similar concepts of encoder and decoder, which makes
them ideal for text generation. They are popularly used in language translations
and several applications wherever text needs to generated. Our chatbot is no
exception. Hence we deploy this model for reply generation.

A common problem with decoders are that they solely rely on the context vectors.
For this attention mechanism is used so that decoder uses some part of the input
sequence as well for prediction.

Multi layered gated recurrent neural network is used in the encoders and decoders.

Emotion Classification

Bayes’ Classifier is a probabilistic classifier based on Bayes’ theorem with strong
independence assumptions between features. This is a very simple machine
learning technique with moderate accuracy. This model is used since the server
could not support two models running simultaneously. The model classifies
emotions into two classes namely positive (happiness, confidence, etc) and
negative (sad, depression etc.). Based on the predicted emotion, the application
changes the colour of interface.

Bayes’ Classifier

Generating replies according to emotions:
Combining the two models:

When the user string is received the at the server, the emotion is classified using
the Bayes’ classifier. Based on the emotion predicted by the classifier, a seq2seq
model is selected. We have two models, one is in negative state and the other is in
positive state. Based on the emotion of the user, an appropriate reply is generated.

Using MySQL for database management :

The following table was used to store data of the users:

More Features:

PREVIOUS CHAT HISTORY
J.A.R.V.I.C. stores the previous chat history of the

user and loads it into the interface upon login.

More Features:

EMERGENCY DETECTION:
J.A.R.V.I.C. can detect critical situations when it

realizes that the person it is chatting with is highly

depressed and sends the username and contact of

the person to the concerned authorities (currently

on the terminal).

Challenges Overcome

01
Prediction of emotion of user by analysing the messages received. This is really

tricky as first of all there is no good dataset available that fits our use. Currently

the Bayesian classifier is trained on IMDB Movie review dataset. Secondly and

most importantly, only text is often quite misleading context related meanings

and homonyms.

02
Prediction of reply of message sent by user depending upon message and

emotion of user. Currently, our model has two states namely, user is happy or

sad. The emotion classifier predicts the state and the models take the necessary

actions. In future, we plan to create several states and train a decision process

to take the decision for the action the model should take.

03
Predicting the replies is itself very difficult. The major hurdle we faced was we

did not have enough data. We created our own data but we only able to create a

total of 10 kbs in which we had to train two models. Due to this our model have

very limited vocabulary. We plan to generate much more data so that the

models can generate better.

References

DEMONSTRATION

Thank you!

Launching our startup soon!

